Spectral methods for time-dependent PDEs

Xane

We want to approximate partial differential equations of

the form
in

ot

given a well-posed differentiable operator £ and suitable
initial and boundary conditions. Let ¢ be a sufficiently
smooth, orthonormal system of functions in Ly(2), such
that (©m, vn) = [ @m(€)on(Y)de = 6pn,m,n € Z.

Then, a spectral method is an approximation of the so-
lution to this equation in the form wu(x,t) ~ un(x,t) =

=Lu+f, (x,t) € QxRy

ZT]:[:O Un (t)pn(x), where the coefficients @ are obtained by
imposing Galerkin conditions on the equation and solving
ODEs of the form

N
Za<£¢”7@m> + <.f7 Spm>7 m

n=0

dit,
dt

0,....N

How do we pick an appropriate orthonormal system? The
solution to our equation must be stable, which is to say
that it must converge as N tends to infinity, this conver-
gence must be quick enough to be usable, with u,, — 0 for
each n > 1 as n — oo, and finally each extra step from kAt
to (k + 1)At should have a low cost.

We guarantee this by studying an orthonormal system
O = {p,}>2, € CHQ) differentiation matriz. This is a
na/mtural linear map ® — & produced by it, defined by
On = peoPnipr, n€Zy.

If we consider the function u as a vector of each of its
coefficients. As u can be written as an infinite sum of the
components of ¢, the differentiation matrix D will send u
to its derivative u’'.

Lemma. If every ¢, obeys zero Dirichlet conditions, D is
skew-Hermaitian.

An orthonormal system with a skew-Hermitian
differentiation matrix is a stable orthonormal sys-
tem.

There are two approaches to finding spectral solutions,
T-systems and W-functions. When defining T-systems, we
impose a requirement that the differentiation matrix is tridi-
agonal. However, in my research we exclusively inspected
W-functions.

A function w is a weight function if it is non-negative, if
each of its moments [*°_z"w(z)dx are bounded and if the
zeroth moment is positive.

An orthogonal polynomial sequence (OPS) is a se-
quence of polynomials which obey the equation: (P, Py,) =
f; w(z) Py () Po(x)dx = 8y .-

If we have a weight function which generates an
OPS, we can define the n-th W-function by ¢,(z) =

w(:v)pn(x), ne N0-

As this results in the same equation on the standard
functional inner product as an OPS does on its weighted
inner product, we immediately have an orthonormal sys-
tem.

Additionally, we have the following lemma,

Miles

Lemma. D is skew symmetric if and only if w(a) = w(b)
0.

In one dimension, intervals either have zero finite end-
points, in which case they do not have a boundary that
conditions can be imposed on, one finite endpoint or two
finite endpoints. We solve PDEs with one finite endpoints
using the Laguerre W-function, orthogonal on (0, c0) with
weight function x%e~* and the Jacobi W-function, orthogo-
nal on (—1, 1) with weight function (1—x)%(1+z)?. Specif-
ically, we use the ultraspherical W-function, where oo = (.
Closed form expressions for these W-functions can be found
in Iserles and Webb.

As the W-function system is formed by multiplying the
weight function by an orthogonal polynomial, we can use
properties of the weight function to observe properties of the
W-function. See that Laguerre and ultraspherical functions
obey Dirichlet conditions on their endpoints, and therefore
have a skew-symmetric differentiation matrix. In general, if
we set boundary conditions on the k-th derivative, then we
find the Laguerre W-function with o = k and the ultras-
pherical W-function with a = 8 = k fulfill these conditions.

What if we have general Dirichlet conditions, instead of
zero or constant Dirichlet conditions?

On a line, this is easy. Take the PDE %"; = Lu+
f(u,t), ¢ >0,z € [-1,1]. Then, apply the initial condi-
tion u(x,0) = ug(z) and the boundary conditions u(—1,¢) =
a_(t), u(l,t) = as(t). We can construct the appropriate
linear interpolation p(z,t) = 2(1—z)a_(t)+ 1 (1+2)a; (1),
set v(z,t) = u(z,t) — p(x,t), producing the equation
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with initial condition and zero Dirichlet conditions,
which we can solve using a spectral method.

We can use the method of Hermite interpolation to ex-
pand to higher order conditions on a line. However, in two
or more dimensions, general boundary conditions become
more tricky. For Dirichlet conditions in two dimensions this
is already solved, and we can interpolate within a triangle:
see a forthcoming paper from Iserles. Higher dimensions
and higher order conditions remain an open problem.

=Lv+ f(t,v+p)+Lu—
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