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Goal

• Find the equilibrium constant of a specific chemical interaction.

𝑚𝐻 + 𝑛𝐺 𝐾𝑚𝑛 𝐻𝑚𝐺𝑛

𝐾𝑚𝑛 =
𝐻𝑚𝐺𝑛

𝐻 𝑚 𝐺 𝑛

where [𝑋] represents the concentration of chemical 𝑋. We can 
also say the chemical 𝐻𝑚𝐺𝑛 has an equilibrium constant 𝐾𝑚𝑛.

Intuitively, this number represents how ‘strong’ the interaction is.



Outline

I. Background introduction: P4 to P9.

II. The 3 problems:

a) Model misspecification error: P10 to P25.

b) Errors in X: P26 to P27.

c) Outliers in data: P28 to P30.



Background
Introduction



Experiment

• Denote host solution by 𝐻 and guest solution by 𝐺. We first 
prepare a solution only consisting of 𝐻 in a container, and we 
add 𝐺 into 𝐻 drop by drop. These two chemicals will interact 
and form new molecules, causing the color of the solution to 
change. 

• We would like to model the relation between color changes and 
drops of 𝐺 added to the container. In order to quantify color 
changes, we use light absorbances. 



Linear model

• From chemistry, we have a law called Beer Lambert law, which 
states that the light absorbance and concentrations of all 
chemicals in our solution have a linear relation. This allows the 
usage of linear models:

𝑌 = 𝑋𝛽 + 𝜖

• where 𝑌 is light absorbance, 𝑋 is concentrations, 𝛽 is molar 
absorptivity and 𝜖 is the measurement error in 𝑌.



How one collects data

• Suppose we add 𝐺 into 𝐻 for 51 times. At each addition of 𝐺, we 
measure the light absorbance of the whole solution at, say, 301 
wavelengths from 200 to 500. Therefore, we end up having 51 ×
301 datapoints for dependent variables (i.e. light absorbances). 
This is essentially a linear model with multiple outputs. Our 
independent variables are concentrations of chemicals existing in 
the whole solution.

• Instead of finding molar absorptivity 𝛽, we are more interested in 
finding the equilibrium constants 𝐾 of existing chemicals. Reasons 
in the next page.



Warning: compute X rather than measure X

• Different than normal applications of statistical techniques …

• Why can’t we measure 𝑋 …

• As a chemist, one would be able to identify significant 
interactions but may not be able to realize those reactions with 
equilibrium constants that are too small. Thus, one must assume 
an 𝑚: 𝑛 model first before any modelling goes on.



What is an 𝒎: 𝒏 model 

• In an 𝑚: 𝑛 model, we assume all possible chemicals are:
𝐻, 𝐺, 𝐻𝐺, … , 𝐻𝐺𝑛, 𝐻2𝐺, … , 𝐻2𝐺𝑛, … , 𝐻𝑚𝐺, … , 𝐻𝑚𝐺𝑛

with equilibrium constants 𝐾11 (for 𝐻𝐺), 𝐾12 (for 𝐻𝐺2), … and 𝐾𝑚𝑛 
(for 𝐻𝑚𝐺𝑛).

• Below unless specified, I use 1:1 model and 1:2 data for 
illustration.

①  1:1 model: only 𝐻, G and 𝐻𝐺 exist.

②  1:2 data: 𝐻, 𝐺, 𝐻𝐺 and 𝐻𝐺2 exist.



Problem 1: 
Model Misspecification Error



Problem 1: model misspecification error

• Model misspecification error refers to the problem of incorrectly 
specifying a model. In statistics, a common goal is to search for 
a correctly specified model, and then perform parametric 
approaches. However, in out case, the model is inevitably wrong:

‘Our model can only include finitely many predictors, while there 
could be infinitely many possible chemicals existing. Even though 
the number of existing chemicals is finite, we cannot realize their 
existence if they have negligible equilibrium constants.’

• Question: how do we design an approach that returns 𝐾𝑚𝑛 as 
close to true 𝐾𝑚𝑛 as possible?



Current approach:
OLS



Current approach

Suppose we identified all significant chemicals by eyes to be 𝐻, 𝐺
and 𝐻𝐺 (a 1:1 model), but the data was 1: 2 with 𝐾1 and 𝐾2.

I. Guess 𝐾1.

II. Compute 𝑋 ≔ 𝐻, 𝐺, 𝐻𝐺 using the set of equations:
𝐻 + 𝐻𝐺 = 𝐻𝑡
𝐺 + 𝐻𝐺 = 𝐺𝑡

𝐾1 =
𝐻𝐺

𝐻 𝐺

III. Fit a linear model by መ𝛽 = 𝑋𝑇𝑋
−1

𝑋𝑇𝑌 and compute the RMSE.

RMSE is a function of 𝐾1. Then one iteratively searches for K1 that 
minimizes RMSE(𝑘).



Problem with the current approach

• The accuracy of the described approach heavily depends on 
the assumption that the true 𝐾1 minimizes RMSE. This is not 
necessarily true when 𝐾2 is not so small compared to 𝐾1. This is 
because OLS tends to drag 𝐾1 from its true value to 
compensate light absorbances caused by 𝐾2.

𝑲𝟏 and 𝑲𝟐 values OLS 𝑲𝟏 RMSE

𝐾1 = 4100, 𝐾2 = 100 2743.4 0.0312

𝐾1 = 4020, 𝐾2 = 20 3851.2 0.0287

𝐾1 = 4001, 𝐾2 = 1 4000.1 0.0284



New approach: 
PE approach



PE approach: error sources

I. Model errors:

Induced by the contribution to light absorbances from 𝐻𝐺2. 



PE approach: error sources

II. Independent variables errors:

Induced by additions of 𝐺. This often occurs even if we used true 
𝐾1 to fit models if 𝐾2 is not too small compared to 𝐾1. 
Algebraically, 



PE approach: error sources



PE approach: reliability regions

Region 1: both 

independent 

variables and model 

are reliable. Region 3: Both 

independent 

variables and model 

are not reliable.

Region 2: 

Independent 

variables are reliable, 

but the model is not 

reliable.



PE approach: assign weights

• Intuitively, we should assign weights to data points:

• Question: how do we distinguish regions while we have no 
information for 𝐻𝐺2?

Regions Level of weights

Region 1 Large

Region 2 Moderate

Region 3 Small



PE approach: assign weights

• Fit a model to the first 𝑘 samples.

• Use the fitted model to predict the 𝑘 + 1 th sample.

• Track the prediction errors.

(Will later call this the ‘PE approach’).



PE approach: prediction error plot

𝑥 axis: additions of 𝐺 from 1 to 50

𝑦 axis: prediction error on the (𝑥 + 1)th data



PE approach: restrictions and improvements

Restrictions:

I. The effects of not accounting for insignificant but existent 
chemicals are small until we add 𝐺 to a certain amount.

II. Measurement errors have smaller variances than influences of 
𝐻𝐺2.

III. Have a proper initial guess.

IV. Use a derivative-free minimizer algorithm.

Improvements:

I. Stability: bootstrapping.



PE approach: results

The table below gives results from a dataset where the main issue 

isn't model misspecification but the presence of many outliers. 

Although this wasn't our initial focus, our approach should still 

yield reliable results.

𝑲𝟏 and 𝑲𝟐 values OLS 𝑲𝟏 (error percent) P𝐄 𝑲𝟏 (error percent)

𝐾1 = 4100, 𝐾2 = 100 2743.4 (33.1%) 3837.6 (6.4%)

𝐾1 = 4020, 𝐾2 = 20 3851.2 (4.2%) 3923.5 (2.4%)

𝐾1 = 4001, 𝐾2 = 1 4000.1 (0.02%) 4000.7 (0.007%)

True 𝑲𝟏 OLS 𝑲𝟏 PE 𝑲𝟏

𝐶 × 106 1.8210 × 106 1.1061 × 106



PE approach: sensitivity to initial guesses and 
algorithms

• In the example of real data, we tried 3 initial guesses:

I. 1 × 106: this yields 𝐾1 = 3.3433 × 105.

II. 1.8210 × 106: this yields 𝐾1 = 1.1061 × 106.

III. 1.1061 × 106: this yields K1 = 1.1061 × 106.

and 2 algorithms:

I. fminsearch (derivative-free): uses the Nelder-Mead simplex 
algorithm; gives optimal answers at proper guesses.

II. fmincon (gradient-based): stop immediately.



Problem 2:
Errors in 𝑿



Problem 2: errors in 𝑿 

• This occurs because …

• Can be mitigated by 1) PE approach and 2) bootstrapping:

I. It accounts for errors in 𝑋. If some additions of 𝐺 are terribly 
wrong, they are unlikely to give good predictions on the next 
addition. However, this method also ignores all later additions 
that might be valuable.

II. Bootstrapping averages random errors in 𝑋 by resampling.



Problem 3:
Outliers in Data



Problem 3: outliers in data

• Such problems happen because Beer lambert law 𝐿 = 𝐴 × 𝑙 × 𝑋 
may not hold at some data points due to following reasons:

I. High concentrations …

II. Scattering of light …

III. Path length variability …



Possible approaches

• Wild bootstrap.

• Huber loss.

• Gaussian kernels.

• Spline regression.
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