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What is a protein?
Aims of the project
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How The Nanopore Sensor Works
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t = time amino acid is in nanopore (translocation time)
T = time sensor is switched on for
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Output From The Sensor

Intensity f(v)
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t = time amino acid is in nanopore (translocation time)
T = time sensor is switched on for
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Generating Synthetic Data

Sample from these distributions

Adjustments:

1. Non-uniform t

2. Different emission amounts
3. Detector Bands

Database of ~19000 human protein sequences
Use 100 amino-acid-length fragments
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Machine Learning Model for Individual Amino Acids

Classification of the signals from the 20 different amino acids using a fully connected
neural network:

hidden layers posterior

synthetic data logits probabilities
amino acid
softmax
A >
Size: 64 Size: 20 Size: 20
Size: 3200

The predicted acid is one with maximum posterior probability:

posterior probabilities: Rl 0.00 0.05 0.00 0.05 0.00 0.05 0.05 0.00 : A
possible amino acids: A B C D E F G H | J K L
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Database Lookup

- Compare to a database of known protein sequences

- Probability required

48 64 80

Length of sequences
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Distance from Predicted Sequence

Generate a predicted sequence using the machine learning model.
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Results
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Machine Learning Model for Full Sequences

We now have a classification model on all 19,200 different sequences (of length 100).
5 training data and 1 testing data per sequence

Results for T =t = 40:

Model Type Accuracy (%)

Linear Neural Network 43.8
LSTM Model 84.3
Vision Transformer 97.2

t = time amino acid is in nanopore (translocation time)
T = time sensor is switched on for EMBL-EB] i



Results
T=40, beta=True
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t = time amino acid is in nanopore (translocation time)
T =time sensor is switched on for EMBL-EBI
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Conclusions
and Further
Work




Conclusions

Individual Acid Method

Advantages:

Applicable to
sequencing

unknown proteins

—) A

Disadvantages:

Two sources of
uncertainty
(Neural Network
and Database
Lookup)

Full Sequence Method

0. 0 _

Advantages: Disadvantages:

Increased - Model must be
accuracy retrained on each

Easier to extend database

to non-uniform t
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Further Work

Improve the accuracy of the models

Translocation time, t, IS not known

Full length protein sequences

Insertions/Deletions
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