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When we study algebra, we normally study a single
type of algebraic structure at a time. For example,
we might study groups, or real vector spaces, or rings.
But what if we could study how these different types
of algebra are related and interconnected?
Enter: monads. Monads give us a way to encapsu-

late the key essence of these algebraic theories – e.g.
the theory of groups, or the theory of rings – into tidy
mathematical parcels. I’m going to write Sets for the
category of all sets. You don’t have to know precisely
what this means – you can just think of it as the col-
lection of all sets! For our purposes, a monad will be a
functor – similarly, you can think of this as a function
– of the form T : Sets → Sets, along with some extra
structure. That is, T takes in a set X, and gives us
back another set T (X).
Let’s look at some examples. We have the free

abelian group monad A : Sets → Sets, which takes
in a set X, and gives us the underlying set of the free
abelian group generated by X. E.g. {a, b, c} gets sent
to

{0, a, b, c, 2a, a− 7b, −a+ b+ 4c, . . . }.

Here’s another example: the free monoid monad. A
monoid is an algebraic structure like a group, but it
doesn’t care about inverses. Similarly to the above,
this gives us a monad M : Sets → Sets, which takes
in a set X, and gives us the underlying set of the free
monoid generated by X. E.g. {a, b, c} gets sent to

{1, a, b, c, aa, abba, bbbac, . . . }.

There’s another property of monads that is impor-
tant. Because they map from Sets to Sets, we can
iterate them! E.g. we can form MM(X). We then
have a way to get a function MM(X) → M(X) be-
tween sets, by ‘simplifying’. That is: an element of
MM(X) is just a string of elements of M(X), which
is just a string of elements of X. E.g. (abbc)(1)(c) ∈
MM({a, b, c}), and we can turn this into an element
of M({a, b, c}) by just removing the brackets: abbac.
An important feature of monads is that every monad

T comes with these functions TT (X) → T (X), one for
each set X. Note that whilst T is a functor (it takes in

sets and gives out sets), this function TT (X) → T (X)
is a familiar function between sets: it takes in elements
of the set TT (X), and gives out elements of the set
T (X).
We might also ask if we can compose monads. That

is, can AM : Sets → Sets be thought of as a
monad? Well, if it can, then we need a way to simplify
AMAM(X) → AM(X). It would be nice if we could
do something like transforming λ : MA → AM . We
could then do

AMAM(X) AAMM(X) AM(X)λ simplify

where the simplify arrow represents simplifying for A
and M individually. Such a λ is called a distributive
law.
Let’s look at an example:

λ : MA → AM

(a+ b)(c+ d) 7→ ac+ ad+ bc+ bd

This is the familiar distributivity of multiplication over
addition! Whilst this is familiar, it is a highly nontrivial
fact that this is the only distributive law MA → AM :
this was proved by Zwart and Marsden in 2018. My
research has involved investigating features of distribu-
tive laws that restrict the possible forms they can take.
There’s so much exciting mathematics going on be-

hind the scenes here. If you’re interested in learning
more, try a web search for ‘universal algebra’, ‘monads’,
or ‘distributive laws for monads’. Monads and distribu-
tive laws are part of a very abstract area of mathematics
called category theory, which is well worth your time
to look into! Learning a little category theory can give
you many different insights into the mathematics you
have seen before.
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