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A Random Walk Bridge is a 

Closed Random Walk:,

A walk which is 

conditioned to 

return to its 

start vertex at 

time t,

Image by Andy Roberts from East London, England - Flickr, CC BY 2.0, 

https://commons.wikimedia.org/w/index.php?curid=448926

Antony Gormley's Quantum Cloud 

sculpture in London was designed by a 

computer using a random walk algorithm



In this project, we use a simple random walk which 

traverses a finite bounded-degree graph (where every 

vertex has at most Δ neighbours)

We assume that the 

graph is undirected 

and has no loops or 

multi-edges

A directed graph with loops and multi-edges

(next vertex chosen uniformly)



Why these prerequisites?

Finite, bounded degree   →  Useful bounds

Simple random walk   →  Avoids extreme cases

(on transition probabilities and 

the stationary distribution)



Why this project?

1. Thomas Sauerwald, He Sun, and Danny Vagnozzi. ‘The Support of Open Versus Closed Random Walks’. 

doi: 10.4230/LIPIcs.ICALP.2023.103

Random walks have uses in countless algorithms1

▪ Determining Satisfiability 

▪ Estimating information spreading

▪ Approximating the volume of convex bodies



Why this project?

1. Thomas Sauerwald, He Sun, and Danny Vagnozzi. ‘The Support of Open Versus Closed Random Walks’. 

doi: 10.4230/LIPIcs.ICALP.2023.103

Random walks have uses in countless algorithms1

▪ Determining Satisfiability 

▪ Estimating information spreading

▪ Approximating the volume of convex bodies

▪ Determining Connectedness

▪ Estimating network sizes and densities

▪ The voter model

▪ Graph exploration

▪ Analysis of Randomness Amplification

▪ Estimating load balancing

▪ Electrical networks

▪ Other things in geometry, group theory, etc.



Motivations continued…

Open random walks have many known results

There is currently far less research on closed 

random walks



1. Thomas Sauerwald, He Sun, and Danny Vagnozzi. ‘The Support of Open Versus Closed Random Walks’. 

doi: 10.4230/LIPIcs.ICALP.2023.103

From a paper1 on closed random walks…   

“…it is tempting to conjecture that on any bounded-

degree expander graph, the lower bound on the 

[range] can be improved, possibly even to Ω(t), which 

would … match the bound for open random walks”



The Range of a Random Walk is the number of unique 

vertices it visits

The range of a walk is at most linear in the length of 

the walk

Therefore, a lower bound of Ω(t) could not be 

improved upon

We’ll cover what ‘expanders’ are later…

This means the range’s long-term behaviour is at least linear in t



Counting 

Subgraphs
A result we’ll use later



Later we will need to know an upper bound for the 

number of connected sets of size s containing some 

fixed start vertex

In this section, we will find such a bound

This method was found in the following paper;

Theo McKenzie, Peter M. R. Rasmussen, and Nikhil Srivastava. ‘Support of Closed Walks

and Second Eigenvalue Multiplicity of the Normalized Adjacency Matrix’. url: https://arxiv.org/abs/2007.12819



We may be tempted to find a surjection like this;

Connected 

sets of size 

s around x

Random walks 

of length s 

starting from x
↠

There are at most ∆s random walks of length s starting 

from x

(we send a walk of length s to the set of vertices it visited)



However, not all of these subgraphs can be covered by 

a random walk of length s

x

See that a walk of length 6 starting at x cannot cover 

this subgraph of size 6



In 2s steps, we can 

travel along each edge 

in both directions, 

ending at x again

There are at most ∆2s random walks of length 2s 

starting from x

x

For any subgraph of size s, we 

will hit all vertices this way
(in this example, it looks like we’re making an 

outline of the set)



(This method may seem to only work for ‘tree-like’ 

subgraphs

x

but we can either 

consider the subgraph’s 

spanning tree or 

remove edges until the 

subgraph is minimally 

connected to make it 

look ‘tree-like’)

(if you can already see why this method works for any subgraph of size s then this slide can be skipped!)



Therefore, our surjection instead reads as

Connected 

sets of size 

s around x

Random walks 

of length 2s 

starting from x
↠

Hence there are at most ∆2s subgraphs of size s around x

(we send a walk of length 2s to the set of vertices it visited)



Expander Graphs
And the Relaxation Time



Our result relies on the following Lemma1: 

For a non-empty subset A and non-negative t;

1. Riddhipratim Basu, Jonathan Hermon, and Yuval Peres. ‘Characterization of cutoff for

reversible Markov chains’. url: http://dx.doi.org/10.1214/16-AOP1090.



We use this to bound the probability of staying in a 

set 

(Since leaving A is the same as hitting Ac)

Now, let’s discuss expander graphs; 



Expander Graphs satisfy the following;

In any small subset A of the graph, the number of 

edges leaving the subset is large - at least c|A| for a 

fixed constant c

In an expander graph, it is hard to stay within a small 

subset because the graph is so well-connected



Studying expanders is useful because randomly-

generated graphs are likely to be expanders

Additionally, they have bounds on their relaxation 

time, trel – this will be useful later!

If we uniformly choose a d-regular graph with n vertices and choose some small enough 

α>0 then the probability the graph will be an “α-expander” tends to 1 as n tends to infinity1

1. Nathanaël Berestycki. ‘Mixing Times of Markov Chains: Techniques and Examples’. url: 

https://personal.math.ubc.ca/~jhermon/Mixing/mixing3.pdf.



The result we found in this project is especially strong 

for expander graphs

It proves the tight bound mentioned by Sauerwald et. 

al for large enough walk-lengths 



A Bound for the 

Range of Random 

Walk Bridges
In relation to the Relaxation Time

(The Result)



Below is the result in full – don’t worry about reading 

the fine print!



The main strategy of the proof is to bound the 

probability that a walk has at most range s at time t 

by the probability that a walk of length t stays inside 

some connected set of size s containing the start vertex
Later, we’ll replace s with something more useful 

(we use the union bound here)



We found that the number of connected subsets of 

size s is upper-bounded by ∆2s 



We then recall the lemma from earlier

With some tampering…

(there’s a lot that I’m glossing over in this step)



We can then lazily re-introduce our conditioning and 

find that the right-hand side tends to 0 in certain 

conditions

ℙ 𝐴 𝐵 =
ℙ(𝐴, 𝐵)

ℙ(𝐵)
≤
ℙ(𝐴) ∙ ℙ(𝐵|𝐴)

ℙ(𝐵)
≤
ℙ(𝐴)

ℙ(𝐵)



We set                  and find there exists some constant 

C > 0 such that the right-

hand side tends to 0 for 

t ≥ C trel log n



Therefore, the probability that a closed random walk 

has range below ct/trel tends to 0 for t ≥ C trel log n

This concludes the proof.



Remember expanders?

In a family of expanders, the relaxation time, trel is 

bounded



In the case of expander graphs, our result is 

strengthened. For t ≥ C log n,

This is a tight bound – it cannot be improved upon!



This concludes the presentation!

Thank you for listening!

If you want any more information, feel free to send an email to me at ms2911@cam.ac.uk.
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