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Motivation

Einstein’s equations of general relativity:

Cosmological constant \ Spacetime metric
1
Rap — §Rgab + )‘gab = 81G Top-
~—_——
Curvature of Energy-momentum
spacetime of spacetime

De Sitter space = Maximally symmetric solution of Einstein’s equations with
positive cosmological constant.

Goal: To investigate the existence of a conjectured asymptotic expansion for
the charged scalar field on de Sitter space:

b~ o1 e f gy e 2HE | oo o BHE |
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De Sitter Space

De Sitter space dS4 may be defined as the hyperboloid

2 ].

|zf? — 25 = 2

in (4 + 1)-dimensional Minkowski space
05 = dag — dfa]” — [a]’ges.
Defining

1 1
vo = 47 sinh(Ha), |x| = T cosh(Ha),

the metric 75 descends to the metric g on dSy,

1
g=da?® - 72 cosh?(Ha)gss.
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Conformal Compactification

To study the asymptotic structure of a spacetime (Jl, g) at infinity, we make the
conformal transformation
Gab — gab = Q29c1b
Conformal factor, — 0 asymptotically

This brings infinity to a finite region.
Attach to Ml a boundary .# := {2 = 0} and get a new spacetime
A= o .7

Asymptotic considerations in physical spacetime

i

Local differential geometry near .# in the rescaled spacetime A
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Conformal Compactification of de Sitter Space

1
g=do? — e cosh?(Ha)gss

Make the coordinate transformation e

tan (g) = tanh (?) a | —

T =+m/2

so that the metric becomes I Q T=—m/2
1 ) I
9= o (47~ gs0) - 5
H2cos?7 , w
T 4
P

Metric on the
where 7 € (—m/2,7/2). Einstein cylinder

R xS3
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Conformal Compactification of de Sitter Space

g=0Q72(d7r? — ggs), Q=HcosT

We can attach to (—7/2,7m/2) x S? the boundary
S ={Q=0} ={r==£7/2}

and identify compactified de Sitter space (/1§4
with [—m/2,7/2] x S3.

The boundary is the union of the spacelike
hypersurfaces

f+:{r:+g}, f_:{T:—g}.

K Future null infinity k Past null infinity
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Penrose Diagram for de Sitter Space

g=0"%(dr?—gss), Q= HcosT

If we write the three-sphere metric as

gss = d¢? + (sin® () gge

for ¢ € [0, 7] and quotient out the SO(3)
symmetry group of gs2, we obtain the
Penrose diagram for dSy.
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Static Coordinates on de Sitter Space

Static coordinates on dS4 may be
constructed by defining

sin ¢ sint
r= , tanh(Ht) =
HcosTt (H?) cos

for 7 € (—m/2,7/2) and ¢ € (0, ).
Then

g= F(T)dt2 — F(T)fldr2 — 7”2982,

where F(r) =1 — H*r?.
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The Conformal Wave Equation

For a generic spacetime (M, g), the conformal wave equation is

) Y Scalar field
Lo + gRgb =0.
V.V® = ¢g*V,V, _/ - Scalar curvature of spacetime

Consider the conformal transformation ., = Q?gqs, and choose
¢:=0"¢.
Then the wave equation is conformally invariant:

1 fn 1 s
D¢+6R¢:O = D¢+6R¢>:O.
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The Conformal Wave Equation on de Sitter Space
For de Sitter space we have R = 12H?, so that the wave equation on dSy is
O¢ + 2H?¢ = 0.
Under the rescaling
Gab = 9% Gab, =019,  with Q= Hcosr,
this becomes the conformal wave equation on the Einstein cylinder,
(¢ + ¢ = 0.
The Conformal Method

Estimates for (Z) on compactified spacetime (/154
+

Estimates for ¢ on physical spacetime dSy
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Decay Estimate

Estimates for ¢ on Einstein cylinder
— Estimates for ¢ on physical spacetime dS,.

For sufficiently regular initial data (ngb, &rgzg)li,
one can show that

6| < C as T — /2.

Then since ¢ = €2 QAS,
lp| S Q as t — +oo.

A\ Inequality up to a constant
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Decay Estimate in Static Coordinates

In the static coordinates,

H 1 He 1t
cosh(Ht) \/1 _ H22 tanhz(Ht) V1 — H?r2

as t — 400,

so that keeping r fixed, we have

9] S Q< e H as t— +oc.
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Asymptotic Decomposition of a Scalar Field

We now know that

¢~ pre Bt O™ as t — +oo.

How can we find the coefficient ¢17

Direct substitution into the conformal wave equation:

_ 1 1
D:ﬂmlﬁ—ﬁaw%wwg—ﬁvé

= 0¢ + 2H?%$

et [Pyt 2) 20— Lo, (PF0I) -

as t — +oo.
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Asymptotic Decomposition: First Coefficient
Seperating variables by writing ¢ = F 3R (101 (w®), we obtain

V2.0, + X6, =0,

®’R;  dR; (2 A= A
122 +dz(z>+R1 ettt =0

where z := Hr. The spherical component is solved by the spherical harmonics

Yim-
o?+o+I1(1+1)=0.

0
Rl,n,m,l = Zl Z akzk7
k=0

S

k—1—1

R2,n,m,l = Rl,n,m,l log Z+ Z bz .
k=0
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Asymptotic Decomposition

Hence, we have

1 l

¢~ Z Z O‘Lm,lRl,n,m,lYl,mF(r)_l/Qe—Ht + O(€—2Ht)
=0 m=-1

= agF(r) V27t £ O(e7?1Y)  ast — 4o0.
Similarly, we obtain

co n !

o Z Z Z anvmlel,n,m,lYl’mF(r)*”/QG*nHt

n=11=0 m=-1
oo

= Z P, (r)F(r)™/2e "t a5t — 40,
n=1

where P, is a polynomial in Hr of degree n — 1.
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Asymptotic Decomposition of a Scalar Field

We now know that

¢~ pre Bt O™ as t — +oo.

How can we find the coefficient ¢17

Relate derivatives on @4 to derivatives on dSy:

ot or
Q0, 0,
P = Ct¢+ ac O

= rF(r)" Y2 sinh(Ht)8yp + H F(r)"/? cosh(H1t)8,¢

Q9,6 = ot at¢+a B — 1 (0,0)¢

Reminder:
_ sing
" HcosTt
tanh(Ht) = o’
cos

= H_IF(’I“) 1/2 cosh(Ht)dy¢ + rF(r)"/? sinh(Ht)dp¢ + F(r)'/? sinh(Ht)¢
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Asymptotic Decomposition: First Coefficient

Q) = rF(r) Y2 sinh(Ht)dpp + H F(r)'/? cosh(H1)d,¢
Q0. = H'F(r) "2 cosh(Ht)0;¢ + rF(r)"/? sinh(Ht)0,¢ + F(r)"/?sinh(Ht)$

For sufficiently regular initial data, Ggqg and 8qu have continuous limits on .# 7, so
[20c31,100:6] S QS e as t - 4o

Ht component of ¢,

o1 =l

Considering the e~

and taking the limit as t — +oo,

0~ H’Pat(pl —H2’l°901 —|—F67~<,01,
0~ 01 — Hpr + HrFo,p1 + HF 1.

Equality at ¢t = +o00
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Asymptotic Decomposition: First Coefficient

0 ~ Hrowp1 — Hro1 + Fopp1,
0~ 8t(,01 —Hopp + HTFargol + HFp;
Solving this algebraically, we find that dyp; ~ 0, and
H?rp = F(r)0y¢1.

Solving this ordinary differential equation in r, we obtain

1
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Conclusion

The conformal method can be used to study the asymptotic structures of
spacetimes.

We investigated an asymptotic decomposition of a scalar field on de Sitter space:

—2Ht

p~pre T+ e + @ge3HE L as t — oo.
The coeflicients are given by
(r) = ap +arr 4 4 ap_gr"?
Pn\T) = F(T)n/2
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Conclusion

The coefficients ¢, derived using the conformal method agree with
e (Calculations using quasinormal modes on dSy,

® Direct solution of the PDEs derived from the conformal wave equation.

The asymptotic expansion using the conformal method also holds for the non-
linear Maxwell-scalar field system,

VEy = Im(¢ Dy o),
1
D*Da¢ + 5 R = 0.
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Asymptotic Decomposition: Second Coefficient

For the second coefficient, compute
02,  Q00-¢, Q02

and define

_ e2Ht( Ht).

P ¢ —pre”
We find that s is also independent of ¢, and obtain the ODE

F@fg@ — AH*r8,p9 — 2H? o ~ 0,
which has solution

p2(0) +7¢5(0)

(,02(7”) ~ F(’I“)
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Asymptotic Decomposition: Third Coefficient

Similarly, for the third coefficient, we compute the third derivatives
0o, QRS Q002 Q0%

and find that .
©3(0) + 1p3(0) + 7°¢5(0)
FOPE

p3(r) ~

We thus have the asymptotic decomposition

—2Ht —3Ht
+...

¢~4ple_Ht+902e + p3ze

o210 e 0200) +1eh(0) o 23(0) +15(0) +r705(0) e
F(r)172 F(r) F ()72

+ ...
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