
M. PHIL. IN STATISTICAL SCIENCE

Thursday 3 June 2004 1.30 to 4.30

STATISTICAL THEORY

Attempt FOUR questions, not more than TWO of which should be from Section B.

There are ten questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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Section A

1 Let X1, . . . , Xn be independent random variables with density f(x). Define what
is meant by a kernel K(x), and by the kernel density estimate f̂h(x) of f(x), with kernel
K and bandwidth h > 0.

Define the mean integrated squared error (MISE) of f̂h, and derive an exact
expression for this quantity in terms of f and the scaled kernel Kh, where Kh(x) =
h−1K(x/h).

For a symmetric, second-order kernel, under regularity conditions, the minimum
value of the asymptotic MISE may be expressed as

inf
h>0

AMISE(f̂h) =
5
4
{µ2(K)2R(K)4R(f ′′)}1/5n−4/5,

where µ2(K) =
∫∞
−∞ x2K(x) dx, and R(g) =

∫∞
−∞ g(x)2 dx for a square integrable function

g : R → R. Show that R(f ′′) may be made arbitrarily small by means of a scale
transformation af(ax) of f(x), but that

D(f) = σ(f)5R(f ′′)

is scale invariant, where

σ(f)2 =
∫ ∞

−∞
x2f(x) dx−

(∫ ∞

−∞
xf(x) dx

)2

.

Let
f0(x) =

35
32

(1− x2)31{|x|<1},

and let h(x) be another twice continuously differentiable density satisfying
∫∞
−∞ xh(x) dx =

0 and σ(h) = σ(f0). By considering e(x) = h(x) − f0(x) or otherwise, show that
R(h′′) > R(f ′′0 ).
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2 Let X1, . . . , Xn be independent random variables with continuous distribution
function F (x). Define the empirical distribution function, F̂n(x), and show that the
distribution of

Dn = sup
x∈R

|F̂n(x)− F (x)|

does not depend on F . Explain how this result may be used to construct a confidence
band for F of (1− α)-level coverage.

State the Glivenko-Cantelli theorem.

Now suppose X1, . . . , Xn are independent with distribution function F , and that
θ = θ(F ) is a parametric function which may be expressed as θ(F ) = EF {h(X1, . . . , Xr)}.
Explain why we may always choose h to be symmetric in its arguments. For n > r, define
what is meant by a U -statistic for θ with kernel h.

Let θ(F ) denote the variance of a random variable with distribution function F .
Find a function h : R2 → R which is symmetric in its arguments and which satisfies
θ(F ) = EF {h(X1, X2)}. Evaluate the corresponding U -statistic and simplify your answer
as much as possible.

3 Write brief accounts about Edgeworth expansions and saddlepoint approximations
to the densities of sums of independent, identically distributed random variables. You
should include a description of any notable ways in which the approximations differ.

Let Y1, . . . , Yn be independent random variables with the Laplace density

fY (y) =
1
2
e−|y|, y ∈ R,

for which the cumulant generating function is KY (t) = − log(1− t2) for |t| < 1. Compute
the Edgeworth expansion and saddlepoint approximation to the density of Sn =

∑n
i=1 Yi,

up to, but not including, terms of order n−1.

4 Describe in detail three commonly-used techniques of bandwidth selection in kernel
density estimation, mentioning briefly their asymptotic properties.

Hint: you may find the following formulae helpful:

hAMISE =
(

R(K)
R(f ′′)µ2(K)2n

)1/5

, AMISE(f̂h) =
1
nh
R(K) +

1
4
h4µ2(K)2R(f ′′),

and
E{R(f̂ ′′h )} = R(f ′′) +

1
nh5

R(K ′′) +O(h2)

as n → ∞. When estimating R(f ′′) by R̂
(2)
g = n−1

∑n
i=1 f̂

(4)
g (Xi), the optimal AMSE

bandwidth is
gAMSE ∝ R(f ′′′)−1/7n−1/7.
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5 Give a brief description of marginal and profile likelihoods, contrasting the ways in
which they are used to deal with nuisance parameters.

Let X1, . . . , Xm, Y1, . . . , Yn be independent exponential random variables with
X1, . . . , Xm having mean 1/(ψλ) and Y1, . . . , Yn having mean 1/λ. Further, let X =∑m

i=1Xi and Y =
∑n

i=1 Yi. Write down the joint density of X and Y . Consider the
transformation

T =
X

Y
, U = Y.

By first computing the joint density of T and U , find the marginal density of T and show
that the marginal log-likelihood for ψ based on T is

`(ψ; t) = m logψ − (m+ n) log(ψt+ 1).

Compute the maximum likelihood estimate of λ for fixed ψ, and hence show that
the profile log-likelihood for ψ is identical to `(ψ; t) above.

6 Describe the Wald, score and likelihood ratio tests for hypotheses concerning
a multidimensional parameter θ. Explain briefly how they can be used to construct
confidence regions for θ of approximate (1− α)-level coverage.

Let Y0, Y1, . . . , Yn be a sequence of random variables such that Y0 has a Poisson
distribution with mean θ and for i > 1, conditional on Y0, . . . , Yi−1, the random variable
Yi has a Poisson distribution with mean θYi−1. The parameter θ satisfies 0 < θ 6 1.
Find the log-likelihood for θ, and show that the maximum likelihood estimator, θ̂ =
θ̂(Y0, Y1, . . . , Yn), may be expressed as θ̂ = min(θ̃, 1), where θ̃ = θ̃(Y0, Y1, . . . , Yn) is a
function which should be specified.

For θ ∈ (0, 1), compute the Fisher information i(θ), and show that

i(θ) 6
1

θ(1− θ)

for all n.

Deduce that the Wald statistic for testing H0 : θ = θ0 against H1 : θ 6= θ0,
where 0 < θ0 < 1, does not have an asymptotic chi-squared distribution under the null
hypothesis.
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Section B

7 i) Suppose (Y |U = u) has a Poisson distribution, with mean µu, and U has
probability density function f(u), where

f(u) = θθuθ−1e−θu/Γ(θ), for u ≥ 0.

Show that

a) E(Y ) = µ, var(Y ) = µ+ µ2/θ,

b) Y has frequency function

g(y|µ) =
Γ(θ + y)µyθθ

Γ(θ)y!(µ+ θ)θ+y
for y = 0, 1, 2, . . . .

ii) If (Y1, . . . , Yn) are independent observations, and Yi has frequency function
g(yi|µi), where logµi = βxi, and x1, . . . , xn are given, describe how to estimate β in
the case where θ is a known parameter, and derive the asymptotic distribution of your
estimator.

8 Let Y1, . . . , Yn be independent variables, such that

Y = µ1 +Xβ + ε,

where X is a given n× p matrix of rank p, β is an unknown vector of dimension p, µ is an
unknown constant, and 1 is the n-dimensional vector with every element 1. Assume that
XT 1 = 0, and that ε ∼ N(0, σ2I), where σ2 is unknown.

i) Derive an expression for β̂, the least squares estimator of β, and derive its
distribution.

ii) How would you test H0 : β = 0?

iii) How would you check the assumption ε ∼ N(0, σ2I)?

(You may quote any standard theorems needed.)

9 What is meant by an improper prior in a Bayesian analysis?

Let X1, . . . , Xn be independent identically distributed N(µ, σ2), with both µ and
σ2 unknown. Suppose that µ and σ2 are given independent prior densities. Show that
in the case of the improper prior π(µ) ∝ 1 for µ, the marginal posterior density of σ2

depends only on the sample variance s2 = (n− 1)−1Σn
i=1(xi − x̄)2.

Show further that in the case of improper priors π(µ) ∝ 1, π(σ2) ∝ σ−2, the
posterior distribution of σ2 is that of (n− 1)s2/V , where V ∼ χ2

n−1.
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10 Write an account of the main results in the frequentist (Neyman-Pearson) theory of
optimal hypothesis testing. Your account should include discussion of all of the following:
size of a test, Neyman-Pearson Lemma, uniformly most powerful tests, and unbiased tests.

(Proofs of results are not expected.)
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