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1 (a) Define what it means for a process to be a local martingale.

(b) Suppose that X is a continuous local martingale of finite variation, with X0 = 0.
Show that X ≡ 0 almost surely. (You may assume that the total variation process of X
is adapted and continuous.)

(c) Deduce that if Y is another continuous local martingale then there can be at
most one continuous adapted increasing process A such that Y 2−A is again a continuous
local martingale.

(d) Suppose now that H is a simple process, i.e.

H =
n−1∑
k=0

Zk1(tk,tk+1],

where n ∈ N, 0 = t0 < t1 < . . . < tn < ∞ and Zk is a bounded Ftk
-measurable random

variable for each k. Suppose that M is an L2-bounded martingale with quadratic variation
process [M ]. Define the stochastic integral H ·M and prove that

E[(H ·M)2∞] = E[(H2 · [M ])∞].

(You may assume that the Lebesgue-Stieltjes integral on the right-hand side is well-defined
and that H ·M and M2 − [M ] are martingales.)

2 Suppose that B is a standard Brownian motion and that H is a locally bounded
previsible process such that

∫ t

0
H2

s ds is strictly increasing in t,
∫ t

0
H2

s ds < ∞ for all t > 0
and

∫∞
0

H2
s ds = ∞.

(a) Set T = inf{t ≥ 0 :
∫ t

0
H2

s ds > σ2}, where σ 6= 0. Prove that

∫ T

0

HsdBs ∼ N(0, σ2).

(b) State the Dubins-Schwarz theorem for a local martingale M .

(c) Using part (a), or otherwise, prove the Dubins-Schwarz theorem in the special
case where Mt =

∫ t

0
HsdBs.
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3 (a) Suppose that W is a Brownian motion and set

At =
∫ t

0

sgn(Ws)dWs,

where
sgn(x) =

{−1 if x ≤ 0
1 if x > 0.

Show that A is another Brownian motion and that if Vt = W 2
t then

dVt = 2
√

VtdAt + dt

(here,
√

x is the non-negative square root of x ∈ [0,∞)).

(b) Let B(1) and B(2) be independent Brownian motions and suppose that α ≥ 0
and β ≥ 0 are constants. Let X satisfy

dXt = 2
√

XtdB
(1)
t + αdt, X0 = x ≥ 0

and let Y satisfy
dYt = 2

√
YtdB

(2)
t + βdt, Y0 = y ≥ 0.

Show that Z = X + Y satisfies

dZt = 2
√

ZtdBt + γdt, (?)

where B is another Brownian motion and γ is a constant which you should determine.

(c) Suppose that Z is a solution to the stochastic differential equation (?) for some
γ ≥ 2, with Z0 = r2 and r > 0. Set Rt =

√
Zt and find a stochastic differential equation

(which we will refer to as (SDE)) satisfied by R, at least until time ζ = inf{t ≥ 0 : Rt = 0}.

(d) What does it mean for uniqueness in law to hold for a stochastic differential
equation? Assume that uniqueness in law holds for (SDE) and suppose also that γ ∈ Z
and γ ≥ 2. Argue carefully that any solution to (SDE) must have the same distribution
as the Euclidean norm of a γ-dimensional Brownian motion started from the sphere
{x ∈ Rγ : |x| = r}.

Stochastic Calculus and Applications [TURN OVER
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4 (a) Suppose that σ : R → R and b : R → R are Lipschitz functions. Prove that
there is pathwise uniqueness for the stochastic differential equation

dXt = σ(Xt)dBt + b(Xt)dt.

(You may use Gronwall’s lemma without proof.)

(b) Henceforth, consider the special case

dXt = dBt + Xtdt, X0 = 0.

By means of an exponential integrating factor, find the (pathwise unique) solution.

(c) Let T = inf{t ≥ 0 : Xt = 1 or Xt = −1}. Suppose that under the probability
measure P̃, X is a Brownian motion. Using Girsanov’s theorem, find a new probability
measure P, absolutely continuous with respect to P̃, such that B is a Brownian motion
under P, at least until time T .

(d) Show that

P(T ≤ t) ≥ exp
(

1
2
− t

)
P̃(T ≤ t).

(You may find it helpful to use Itô’s formula to give an alternative expression for∫ t

0
XsdXs.)

5 Consider, for ε > 0, the unique solution uε ∈ C1,2
b (R+×Rd) of the Cauchy problem{

∂uε

∂t = Lεuε on (0,∞)× Rd,
uε(0, .) = f on Rd.

Here,

Lε =
ε2

2
∆ + b(x).∇+ c(x),

with b a Lipschitz vector field on Rd, c ∈ Cb(Rd), and f ∈ C2
b (Rd). Fix x0 ∈ Rd and let

(xt)t≥0 be the unique solution to the differential equation ẋt = b(xt) starting from x0.
Show that, for all t ≥ 0, as ε ↓ 0,

uε(t, x0) → f(xt) exp
{∫ t

0

c (xs) ds

}
.

You may use any result from the course without proof, provided that you state it clearly.
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6 State what is meant by a Markov jump process X with state-space (E, E) and
generator Q, adapted to a given filtration (Ft)t≥0.

Write µ for the jump measure of X on (0,∞)× E, given by

µ =
∑

Xt 6=Xt−

δ(t,Xt).

State a general result which allows one to identify martingales associated with X in terms
of µ.

Consider now the case where X is a birth process with rates λ(1), λ(2), . . .. Thus
X has state-space N and, for all t ≥ 0 and i ∈ N, at time t, conditional on Xt = i, X
jumps to i + 1 at rate λ(i). Fix θ ∈ R and set

Mt = exp
{

θXt − (eθ − 1)
∫ t

0

λ(Xs)ds

}
.

Show that, for any value of θ, M is a local martingale up to the explosion time ζ of X.
Show further that, if the rates are uniformly bounded, then M is in fact a martingale.

END OF PAPER
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