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1 Let G = (V,E) be a finite connected graph with |E| ≥ 1, considered as an electrical
network with strictly positive conductances we, e ∈ E, and source s, sink t. State
Kirchhoff’s first and second laws for the currents and potential differences of the network.
State Ohm’s law.

Let X = (Xn : n ≥ 0) be a Markov chain on the state space V with transition
matrix

pxy =
we∑

f∼x wf

where e is the edge 〈x, y〉 and the summation is over all edges f incident to x. Thus
pxy = 0 if either x = y or x is not a neighbour of y. The chain starts at X0 = s, and it
stops at the first time it visits t.

Let uxy be the expected total number of one-step transitions of the chain from x
to y; each transition from x to y counts +1, and from y to x counts −1. Show that u
satisfies the two Kirchhoff laws with a total flow of one, and deduce that uxy equals the
current along 〈x, y〉 from x to y when the total flow equals one.

[A clear statement should be given of any general result to which you appeal.]

2 Let Ω = {0, 1}E where E is a finite set. Define an increasing subset of Ω. For
increasing subsets A, B of Ω, define the subset A◦B [sometimes written A �B] containing
vectors ω ∈ Ω for which ‘A and B occur disjointly’.

State the BK ‘disjoint-occurrence’ inequality for the product measure Pp on Ω with
density p.

Consider bond percolation on Z2 with density p, and let A be the event that there
exists an open path that crosses the rectangle [0, 2n] × [0, 2n − 1] from its left side to its
right side. Show that

Pp(A) + P1−p(A) = 1.

By considering the open clusters at vertices of the form (n, y) for 0 ≤ y ≤ 2n, show
that

P 1
2
(rad(C) ≥ n) ≥ 1

2
√

n

where C is the cluster at the origin 0 and rad(C) = max{n : 0 ↔ ∂Λn} with Λn = [−n, n]2.
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3 Let G = (V,E) be a finite graph. Let p ∈ (0, 1), q ∈ {2, 3, . . .}, and write
Ω = {0, 1}E and Σ = {1, 2, . . . , q}V . Let κ be the probability measure on Ω× Σ given by

κ(ω, σ) =
1
Z

∏
e∈E

{
(1− p)δω(e),0 + pδe(σ)δω(e),1

}
,

where δe(σ) = δσx,σy for e = 〈x, y〉 ∈ E.

Show that the first marginal measure of κ is the random-cluster measure φp,q, and
the second marginal measure is the Potts measure πβ,q, where p = 1 − e−β . Derive the
conditional measure on Ω given the vertex-configuration σ, and the conditional measure
on Σ given the edge-configuration ω.

Prove that (
1− 1

q

)
φp,q(x ↔ y) = πβ,q(σx = σy)− 1

q
,

and explain how this can be used to relate the phase transitions of the random-cluster and
the Potts models.

4 Let Ω = {0, 1}E where E is a finite set, and let µ1 and µ2 be probability measures
on Ω. Explain what is meant by saying that µ1 dominates µ2 stochastically. State the
Holley condition for this to occur.

Let G = (V,E) be a finite graph, and let φp,q be the random-cluster measure on G
with parameters p and q. Prove that

φp′,1 ≤st φp,q ≤st φp,1, q ≥ 1, p ∈ (0, 1),

where p′ = p/[p + q(1 − p)] and ≤st denotes stochastic ordering. [You may need the fact
that k(ω) + η(ω) is a non-decreasing function of ω, where k(ω) is the number of open
clusters of ω and η(ω) is the number of open edges.]

Let pc(q) denote the critical point of the (wired) random-cluster measure on Zd,
where q ≥ 1. Show that pc(1) ≤ pc(q), and derive an upper bound for pc(q) in terms of
pc(1).
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5 Describe the graphical representation of the contact model on Zd, in terms of
Poisson processes of deaths and infection with respective intensities δ and λ. Let δ = 1,
and write θ(λ) for the probability that an initial infection at the origin persists in Zd for
all future time. Explain why θ is a non-decreasing function, and define the critical point
λc = λc(d) of the process.

Prove that λc ≥ (2d)−1.

By coupling the d-dimensional process with the one-dimensional process with
infection rate dλ, or otherwise, show that λc(d) ≤ d−1λc(1).

6 Let G = (V,E) be a finite graph, and Σ = {−1,+1}V . For x ∈ V , σ ∈ Σ, let
N(x) = Σy∼xσy be the sum of the states of the neighbours of x. Consider a discrete-time
Markov chain X = (Xn : n ≥ 0) on Σ with transition probabilities

p(σx, σx) =
1
|V |

· e2N(x)

1 + e2N(x)
,

p(σx, σx) =
1
|V |

· 1
1 + e2N(x)

,

for x ∈ V , σ ∈ Σ, where σx (respectively, σx) is the configuration obtained from σ by
setting the value −1 (respectively, +1) at the position labelled x. Let p(σ, σ′) = 0 if σ, σ′

differ at more than one vertex. Show that X is a (time-)reversible Markov chain with
respect to the Ising measure

π(σ) = 1
Z exp

(∑
x∼y

σxσy

)
, σ ∈ Σ,

where the summation is over all unordered pairs of neighbouring vertices.

Explain how the chain X may be used in a system of ‘coupling from the past’ in
order to generate a random sample with measure π. Prove that the ‘coupling from the
past’ algorithm terminates in finite time, with probability one.

END OF PAPER
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