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1 Time Series

Suppose that

Xt =
p∑

k=1

φkXt−k + εt +
q∑

k=1

θk εt−k, (∗)

where {εt} is a white noise process with variance σ2. Write down conditions under which
(∗) has a unique stationary causal solution Xt =

∑∞
j=0 cjεt−j which is an invertible

ARMA(p, q) process.

Assuming these conditions are satisfied and quoting results from lectures as
necessary, show that the cj ’s satisfy the recursion

cj = θj +
p∑

k=1

φkcj−k, j = 0, 1, . . .

where we define θ0 = 1, θj = 0 for j > q, and cj = 0 for j < 0.

Find a similar recursion for the dj ’s in εt =
∑∞

j=0 djXt−j .

For the process
Xt = φXt−1 + εt + θεt−1, (∗∗)

write down conditions on φ and θ under which (∗∗) has a unique stationary causal solution
which is an invertible ARMA(1, 1) process. Find the cj ’s and the dj ’s.

2 Time Series

Let Xt = εt + θεt−1 where {εt} is a white noise process with variance σ2 and θ is
real. Show that the process {Xt} is weakly stationary. Find its autocovariance function
and its spectral density function f(λ). Show that f(−λ) = f(λ).

For a bivariate process Zt = (Xt, Yt)T with E(Xt) = E(Yt) = 0 for all t, let
cov(Zt, Zt+h) be the matrix (

E(XtXt+h) E(XtYt+h)
E(Xt+hYt) E(YtYt+h)

)
.

Find cov(Wt,Wt+h) where Wt = (Ut, Vt)T , and {Ut}, {Vt} are uncorrelated white noise
processes with variances σ2

u and σ2
v respectively.

Suppose that Zt = (Xt, Yt)T where Xt = Ut+θ11Ut−1+θ12Vt−1, Yt = Vt+θ21Ut−1+
θ22Vt−1, and the θij ’s are real constants.

Show that EXt = EYt = 0 and find cov(Zt, Zt+h) for all integers h.

Find fXY (λ) =
1
2π

∞∑
h=−∞

E(XtYt+h)e−ihλ and show that fXY (−λ) = fXY (λ),

where z̄ denotes the complex conjugate of z.

Time Series and Monte Carlo inference
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3 Monte Carlo Inference

Let F be a distribution function. Define the quantile function F−1 : (0, 1] → R.
Prove that if U ∼ U(0, 1] then X = F−1(U) has distribution function F .

Describe the rejection algorithm for simulating a random variable with density f .
Prove that the output of the algorithm does indeed have density f .

Starting from a sequence (Un) of independent U(0, 1] random variables, in each of
the two cases below give an algorithm to simulate from the given density.

i) f(x) = 1
πx1/2(1−x)1/2 , x ∈ (0, 1)

ii) f(x) = p+π(1−p)|x|+px2

π(1+x2)2 , x ∈ R, where p ∈ (0, 1) is known.

4 Monte Carlo Inference

Let X = (X1, . . . , Xn) be a random vector having independent components each
with distribution function F . Suppose that EF (X4

1 ) < ∞ and that we are interested in
estimating θ = EF (X2

1 ). Define an estimator θ̂n = θ̂n(X) by θ̂n = n−1
∑n

i=1 X2
i . What

is meant by the jackknife estimator v̂JACK of v = VarF θ̂n(X)? Show that v̂JACK is
unbiased.

Now let x = (x1, . . . , xn) be a realisation of X. Define the nonparametric bootstrap
estimator v̂BOOT of v. Describe a Monte Carlo algorithm for approximating v̂BOOT .

What is meant by a bootstrap percentile confidence interval for θ? Give a Monte
Carlo procedure for approximating this interval. Describe one alternative, analytic
confidence interval for θ.

Time Series and Monte Carlo inference [TURN OVER
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5 Monte Carlo Inference

(a) Briefly, and qualitatively, compare and contrast the Metropolis–Hastings (MH)
algorithm and the Gibbs sampler. You should describe, in particular, when the methods
are equivalent, when one might be preferred over the other, and outline the difference
between the original Metropolis algorithm and the MH algorithm.

(b) Let x1, . . . , xN be independent Poisson distributed observations for which there
is a suspicion of a change–point along the observation of the process for some random
m = 1, . . . , N . That is, given m we have that xi|λ ∼ Pois(λ), i = 1, . . . ,m and
xi|φ ∼ Pois(φ), i = m + 1, . . . , N . Our prior assumptions are that λ, φ and m are
independent with λ ∼ Γ(α, β), φ ∼ Γ(γ, δ), and that m has a discrete uniform distribution
over {1, . . . , N}. Treat α, β, γ, and δ as known constants. Recall that the Poisson
distribution has probability mass function

Pois(x|λ) = e−λλx

x! , x ∈ {0, 1, 2, . . .}, λ > 0

and the gamma distribution has probability density function

Γ(x|α, β) = βα

Γ(α)x
α−1e−βx, x > 0, α > 0, β > 0.

(i) Give the joint posterior distribution of the parameter vector θ ≡ (λ, φ,m) for data
x = (x1, . . . , xN ) up to a constant of proportionality.

(ii) Devise a Markov chain Monte Carlo (MCMC) scheme to sample from the
posterior distribution derived in part (i).

(iii) What is the meaning of P(m = N |x)? How would you estimate this quantity
using the sample obtained under the scheme you devised in part (ii)?

Time Series and Monte Carlo inference
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6 Monte Carlo Inference

(a) Briefly explain the similarities and differences between the data augmentation
method and the EM (Expectation–Maximisation) algorithm.

(b) Suppose we observe data x1, . . . , xN that are believed to come from a population of
k distinct clusters. Moreover, x1, . . . , xN are assumed to be independent and identically
distributed with a likelihood function that is a mixture of k normals with common variance:

L(xi;α, µ, σ2) =
k∑

j=1

αjf(xi;µj , σ
2), 0 6 αj 6

k∑
j=1

αj = 1,

where
f(x;µ, σ2) = 1√

2πσ2 exp
{
− (x−µ)2

2σ2

}
.

(i) For fixed k > 1, derive an EM algorithm for estimating the parameters in the
mixture model

θk ≡ (α1, . . . , αk, µ1, . . . , µk, σ2).

(ii) Now suppose the number of clusters, k, is unknown. How would you estimate
k?

END OF PAPER
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