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1 Abstract

Algebraic Geometry
This workshop will give a basic introduction to affine algebraic geometry, assuming no prior

exposure to the subject. In particular, we will cover:

• Affine space and algebraic sets

• The Hilbert basis theorem and applications

• The Zariski topology on affine space

• Irreducibility and affine varieties

• The Nullstellensatz

• Morphisms of affine varieties.

If there’s time we may also touch on projective varieties.
What we expect you to know

• Elementary point-set topology: topological spaces, continuity, closure of a subset etc

• Commutative algebra, at roughly the level covered in the Rings and Modules workshop:
rings, ideals (including prime and maximal) and quotients, algebras over fields (in particular,
some familiarity with polynomial rings over fields).

Useful for Part III courses
Algebraic Geometry, Commutative Algebra, Elliptic Curves

2 Talk

2.1 Preliminaries

Useful resources:

• Hartshorne ‘Algebraic Geometry’ (classic textbook, on which I think this year’s course is
based, although it’s quite dense; I’ll mainly try to match terminology and notation with
Chapter 1 of this book).

• Ravi Vakil’s online notes ‘Math 216: Foundations of Algebraic Geometry’.

• Eisenbud ‘Commutative Algebra with a view toward algebraic geometry’ (covers all the
algebra you might need, with a geometric flavour—it has pictures).
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• Pelham Wilson’s online notes for the ‘Preliminary Chapter 0’ of his Part III Algebraic
Geometry course from last year cover much of this catch-up material but are pretty brief
(warning: this year’s course has a different lecturer so will be different).

Notation: k is an algebraically closed field—can think k = C if you prefer; all rings are
commutative with 1; U ⊂ V means U is a subset of V , but does not exclude U = V .

2.2 Overview

In geometry we study spaces with various different kinds of structures. We could start with
studying just sets; these are quite un-geometric. Introducing a notion of continuity we get topo-
logical spaces, which are much more interesting. In differential geometry we introduce a notion of
smoothness and get manifolds. In algebraic geometry we introduce a notion of polynomial-ness
and get varieties (or more generally schemes). Just as a manifold is a topological space with some
extra structure (and a toplogical space is itself a set with some extra structure), a variety is a
topological space together with some extra structure, which comes in the form of a sheaf of local
regular (‘polynomial’) functions.

We won’t define varieties in general today, but we will discuss the local models: affine varieties.
Just as manifolds locally look like Rn, a general variety locally looks like affine varieties. We won’t
really talk about sheaves either.

2.3 Algebraic sets

Definition: Affine n-space over k, denoted by An, is a variety whose underlying set is kn—so
it’s kn equipped with a particular topology (which we’ll define later) and a particular sheaf of
regular functions (which we won’t). A point p ∈ An is represented by an n-tuple (a1, . . . , an), the
coordinates of p.

The set of regular functions on An is the polynomial ring A = k[X1, . . . , Xn]. The polynomial
f(X1, . . . , Xn) evaluates at p to f(a1, . . . , an). For a subset T ⊂ A we define the zero set Z(T ) ⊂ A
of T to be the set of common zeros of the polynomials in T . When n is small, we’ll typically call
our variables things like X and Y rather than X1 and X2.

Examples: In A2 with regular functions k[X,Y ]:

• Z(Y ) = {Y = 0} is a line—the X-axis (draw picture). This picture is drawn with k = R,
which is not algebraically closed, but it’s a useful way to visualise objects—obviously can’t
draw a diagram in C2. Over other fields pictures break down a bit but they’re good to keep
in mind for intuition.

• Z(XY − 1) = {XY = 1} is a hyperbola (draw picture).

• Warning about pictures over R: some spaces obviously can’t be drawn, e.g. Z(X− i), whilst
others look empty but aren’t, e.g. Z(X2 + 1).

Definition: An algebraic set Y ⊂ An is a subset of the form Z(T ) for some T ⊂ A.
Look at questions 1 and 2.

2.4 The Hilbert basis theorem

If we have sets T1 ⊂ T2 ⊂ A and a point p ∈ Z(T2) then every function in T2 vanishes at p.
So every function in T1 vanishes at p, and thus p ∈ Z(T1). In other words, if T1 ⊂ T2 then
Z(T2) ⊂ Z(T1).

Now consider a set T ⊂ A and let J ⊂ A be the ideal generated by T . Have T ⊂ J so
Z(J) ⊂ Z(T ).

Claim: Z(T ) ⊂ Z(J) so Z(T ) = Z(J).
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Proof: Suppose p ∈ Z(T ) and f ∈ J . Need f(p) = 0. Can write f = a1t1 + · · · + amtm for
some ti ∈ T and ai ∈ A. Since p ∈ Z(T ) have ti(p) = 0 for all i. So

f(p) = a1(p)t1(p) + · · ·+ am(p)tm(p) = 0. �

So given an algebraic set Z(T ) we may as well replace T by the ideal J that it generates.
Recall, a ring R is Noetherian if every ideal is finitely generated, or equivalently if every

ascending chain of ideals terminates, i.e. if

J1 ⊂ J2 ⊂ J3 ⊂ . . .

is a nested sequence of ideals in R then there exists N such that Jn = JN for all n ≥ N .
Examples:

• Z is Noetherian—it’s a principal ideal domain so all ideals are finitely generated.

• Any field k is Noetherian—there are only two ideals, (0) and k, so any chain terminates (also
both ideals are finitely generated).

Hilbert basis theorem: If R is a Noetherian ring then R[X] is also Noetherian.
There’s an exercise at the end of the question sheet that guides you through a proof of this.
Corollary: A = k[X1, . . . , Xn] is Noetherian for all n.
Proof: k is Noetherian, so HBT implies k[X1] is Noetherian. Applying HBT again we see

that k[X1][X2] is Noetherian, but this ring is just k[X1, X2]. Induct. �
Corollary: Any algebraic set Z(T ) can be written as the zero set of a finite collection of

polynomials.
Proof: Let T generate the ideal J in A. Since A is Noetherian, we can pick a finite collection

of generators T ′ = {f1, . . . , fm} for J . Then Z(T ) = Z(J) = Z(T ′). �
Look at question 3.

2.5 The Zariski topology

The algebraic sets form the closed sets of a topology on An, the Zariski topology. Need to check:

• An is closed—it’s Z(0).

• ∅ is closed—it’s Z(1).

• Finite unions: given closed sets Y1, . . . , Ym, we need
⋃m
i=1 Yi closed. We can write Yi = Z(Ji)

for some ideals J1, . . . , Jm, and then:

Claim:
⋃m
i=1 Z(Ji) = Z

(∏m
i=1 Ji

)
(recall

∏
Ji is the ideal generated by products f1 . . . fm

with fi ∈ Ji).
Sketch proof: If p ∈ Z(Jl) then every function fl ∈ Jl vanishes at p, so every product
f1 . . . fm vanishes at p. Hence p ∈ Z

(∏
Ji
)
. So Z(Jl) ⊂ Z

(∏
Ji
)

for all l.

Conversely suppose p /∈
⋃
Z(Ji). Then for each i there exists a function fi ∈ Ji not vanishing

at p. So f1 . . . fm doesn’t vanish at p. Hence p /∈ Z
(∏

Ji
)
. �

• Arbitrary intersections: given closed sets Z(Jα) for ideals Jα, α ∈ A, need
⋂
α∈A Z(Jα)

closed. In fact it’s Z
(∑

α∈A Jα
)

(recall
∑
α∈A Jα is the ideal generated by all of the Jα).

This is the topology we use on the variety An.
Examples:

• Singleton sets are closed: if p ∈ An has coordinates (a1, . . . , an) then

{p} = Z(X1 − a1, . . . , Xn − an).

Taking finite unions, we see that finite sets are closed.
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• The Zariski topology is compact but not Hausdorff, so when k = C it is very unlike the usual
topology on Cn.

We’ve just seen that finite subsets of A1 are closed. The converse can’t quite be true since A1

is infinite but must be closed. But it’s almost true.
Claim: The proper closed subsets of A1 are finite.
Proof: Let Y ⊂ A1 be a proper closed set. Thus Y = Z(J) for some ideal J ⊂ k[X]. This ring

is a principal ideal domain so J = (f) for some polynomial f , which must be non-zero (otherwise
Y would be all of A1). So Y = Z(f) is just the set of roots of f . And non-zero polynomials over
a field can have only finitely many roots. �

So we have a topology on An and a k-algebra of regular functions A from An to k. Identifying
k with A1 it makes sense to ask if the regular functions are continuous.

Claim: The regular functions on An are continuous as maps An → A1.
Sketch proof: Since proper closed subsets of A1 are finite, it is sufficient to prove that if

f ∈ A = k[X1, . . . , Xn] is a regular function and a ∈ k then the set f−1(a) is closed in An. But
this set is precisely the zero set of f − a, i.e. it is Z(f − a), which is closed. �

Now look at questions 4 and 5.

2.6 Affine varieties

Given a Zariski-closed subset Y ⊂ An we can view it as a topological space with the subspace
topology. This is called the Zariski topology on Y . There is a natural way to put a sheaf of regular
functions on Y coming from An.

Definition: An affine variety is a variety formed in this way from a Zariski-closed subset of
affine space.

Earlier we defined the map

{subsets of A} Z−→ {subsets of An}.
The image consists of the Zariski-closed subsets, and we may restrict the domain to ideals without
changing this.

Now we define a map the other way: given any subset Y ⊂ An, let the ideal of Y , I(Y ), be
the set of polynomials which vanish at every point of Y :

I(Y ) = {f ∈ A : f(p) = 0 for all p ∈ Y }.
This is an ideal in A.

So we get

{subsets of A} I←− {subsets of An}.
Note that if Y1 ⊂ Y2 are subsets of An then any polynomial vanishing at every point of Y2

vanishes at every point of Y1, i.e. I(Y2) ⊂ I(Y1). The composition Z ◦ I maps a set to its closure
in the Zariski topology (see question ??).

For an affine variety Y ⊂ An, we can restrict functions on An, i.e. elements ofA = k[X1, . . . , Xn],
to get functions on Y . This restriction map is a k-algebra homomorphism into the ring of contin-
uous functions on Y , whose kernel is precisely the functions vanishing on Y , i.e. I(Y ).

Definition: The regular functions on Y are the functions in the image of this homomorphism.
The coordinate ring A(Y ) of Y is the ring of regular functions on Y . By the first isomorphism
theorem, we can think of this as A/I(Y ). Warning: it is not in general true that A(Z(J)) = A/J ;
we have to work with A/I(Z(J)).

Examples:

• A(An) = k[X1, . . . , Xn].

• For the parabola Y = Z(X2 −X2
1 ) we have I(Y ) = (X2 −X2

1 ) so A(Y ) = k[X1, X2]/(X2 −
X2

1 ) ∼= k[X] (apply the first isomorphism theorem to the map X1 7→ X, X2 7→ X2).

Look at next block of questions.
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2.7 Irreducibility

Definition: Let X be a topological space. X is irreducible if it’s non-empty and whenever
X = E ∪ F for closed sets E,F we have X = E or X = F . A subset Y ⊂ X is irreducible if
it’s non-empty and whenever Y ⊂ E ∪ F for closed sets E and F we have Y ⊂ E or Y ⊂ F .
This is equivalent to Y being irreducible as a space equipped with the subspace topology from
X. A space/subset is reducible if it’s not irreducible. Irreducibility is like a stronger version of
connectedness.

Examples:

• R with the standard Euclidean topology is reducible; we can take E = (−∞, 0] and F =
[0,∞).

• A1 is irreducible: A1 is infinite (since k is algebraically closed), so if A1 = E ∪ F for closed
sets E and F then E or F is infinite, hence E or F is all of A1.

• In A2 the set Z(XY ) is reducible: take E = Z(X) and F = Z(Y ) (draw picture).

Definition: An afffine variety is irreducible if its underlying topological space is irreducible.
(Warning: in Hartshorne all varieties are assumed irreducible.)

Claim: An affine variety V ⊂ An can be written as a finite union of irreducible affine varieties
V1, . . . , Vn with Vi * Vj for all distinct i and j (the Vi are unique up to reordering and are called
the components of V ).

Sketch proof: If V is irreducible then we’re done. If not we can write V = V1 ∪V2 for proper
closed subsets V ′ and V ′′. Each of these is irreducible or can be decomposed again. Keep going.
We need to show this process terminates. So suppose for contradiction that we have a strictly
descending sequence of closed subsets

V ) V1 ) V2 ) . . . .

Then we get an ascending chain of ideals in A

I(V ) ⊂ I(V1) ⊂ V2 ⊂ . . . .

And the inclusions are all strict: if I(Vi) = I(Vj) then Vi = Z(I(Vi)) = Z(I(Vj)) = Vj . This
contradicts the Hilbert basis theorem.

Therefore the process does terminate and we can write V = V1 ∪ · · · ∪Vn for irreducible closed
subsets Vi. If Vi ⊂ Vj for some i 6= j then throw out Vi. Keep applying this until no Vi is contained
in any other. We then get the result. �

Examples:

• The components of the variety Z(XY ) ⊂ A2 (draw picture) are the two lines (each of these
is irreducible by the same argument as for A1; in fact the lines are isomorphic to A1, which
we’ll define later).

• The hyperbola Z(XY − 1) (draw picture) is irreducible (we’ll prove this later) although it
looks like it has two separate components.

Look at the next block of questions.

2.8 The Nullstellensatz

Recall I and Z. We’ve seen what Z ◦ I does. What about I ◦ Z?
Definition: For an ideal J in a ring R, the radical of J is

√
J := {r ∈ R : rn ∈ J for some positive integer n}.
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This is an ideal of R. Say J is radical if J =
√
J .

Example: If J is a prime ideal then it is radical: if r ∈
√
J then for some positive integer n

we have rn ∈ J , so by primality we have r ∈ J . Hence
√
J ⊂ J . The other inclusion is trivial.

Nullstellensatz: For an algebraically closed field k, and an ideal J ⊂ A = k[X1, . . . , Xn], we
have I(Z(J)) =

√
J .

Examples: In An with coordinate ring A = k[X1, . . . , Xn]:

• If J = (X2
1 ) ⊂ A then Z(J) is the linear subspace {X1 = 0} so I(Z(J)) = (X1) =

√
(X2

1 )

• Non-example: if k = R and J = (X2
1 + 1) then Z(J) = ∅ but

√
J 6= I(∅) = A; the problem

is that R is not algebraically closed

So we get a bijective inclusion-reversing correspondence

{radical ideals in A} ←→ {Zariski-closed sets in An}.

Claim: The ideals corresponding to irreducible sets are precisely the primes. This is an
example of the interaction between algebra and topology.

Sketch proof: Let Y ⊂ An be closed. If I(Y ) is prime and Y = E ∪ F for closed subsets E
and F (closed in Y and, equivalently, in X) then I(Y ) = I(E) ∩ I(F ) ⊃ I(E)I(F ). Since I(Y ) is
prime, we deduce that I(Y ) ⊃ I(E) or I(Y ) ⊃ I(F ), so Y = Z(I(Y )) ⊂ Z(I(E)) = E or Z ⊂ F .
Hence Y is irreducible.

Conversely, if I(Y ) is not prime then pick f, g ∈ A with fg ∈ I(Y ) but f, g /∈ I(Y ). We
get an ideal (fg) ⊂ I(Y ), so Y = Z(I(Y )) ⊂ Z(fg) = Z(f) ∪ Z(g). But Y * Z(f), Z(g) since
f, g /∈ I(Y ). Setting E = Z(f) and F = Z(g) we see that Y is not irreducible. �

We thus have

Y irreducible ⇐⇒ I(Y ) prime ⇐⇒ A(Y ) an integral domain.

Examples:

• An has coordinate ring k[X1, . . . , Xn] which is an integral domain, so is irreducible.

• We saw that Z(XY ) ⊂ A2 is reducible. The coordinate ring is k[X,Y ]/(XY ), which is not an
integral domain, since it contains the non-zero functions X and Y whose product is 0. The
individual lines Z(X) and Z(Y ) are irreducible since I(Z(X)) = (X) and I(Z(Y )) = (Y )
and these ideals are obviously prime.

• The hyperbola Z(XY − 1) ∈ A2 is irreducible because

k[X,Y ]/(XY − 1) ∼= k[X,X−1]

and the right-hand side is an integral domain.

The maps I and Z can be applied to subsets of a variety Y and subsets of its coordinate ring
A(Y ) to get

{radical ideals in A(Y )} ←→ {closed subsets of Y }

Again irreducible subsets correspond to prime ideals.
Maximal ideals should correspond to minimal closed subsets, i.e. points. This is indeed the

case:

• For a point p ∈ Y we have a surjective k-algebra homomorphism evp : A(Y ) → k given by
f 7→ f(p) (it’s surjective because of the constant functions in A(Y )). Since the image is a
field, the kernel is maximal ideal m ⊂ A(Y ). This is precisely I(p).
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• Conversely, given a maximal ideal m ⊂ A(Y ) we have a closed subvariety Z(m) ⊂ Y with

I(Z(m)) =
√
m = m 6= A(Y )

so Z(m) 6= ∅. If Z(m) contains a point p then {p} is a closed subvariety of Z(m) so I(p)
is a radical ideal in A(Y ) containing m—by maximality of m we see that I(p) = m and so
Z(m) = p.

Therefore Z and I give bijective inclusion-reversing correspondences

{radical ideals in A(Y )} ←→ {closed subsets of Y }
{prime ideals in A(Y )} ←→ {irreducible closed subsets of Y }

{maximal ideals in A(Y )} ←→ {points of Y }

Now look at next block of questions.

2.9 Morphisms

We now have objects—affine varieties. What is the right notion of maps between them?
Definition: For an affine variety Y ⊂ An, a morphism Y → Am is a continuous map given

in components by (f1, . . . , fm) for some regular functions f1, . . . , fm ∈ A(Y ) (so it’s basically
given by polynomials). If Y ′ ⊂ Am is an affine variety, a morphism from Y to Y ′ is a morphism
Y → Am whose image lies in Y ′. Note that the identity map on a variety is a morphism, and
the composition of two morphisms is a morphism. An isomorphism from Y to Y ′ is a morphism
φ : Y → Y ′ such that there exists a morphism ψ : Y ′ → Y with ψ ◦ φ = idY and φ ◦ ψ = idY ′ .

Examples:

• The varieties Y := A1 and Y ′ := Z(X2 −X2
1 ) ⊂ A2 are isomorphic via

φ : Y → Y ′, t 7→ (t, t2)

and
ψ : Y ′ → Y , (t, t2) 7→ t.

(Draw picture.)

• Isomorphic varieties are homeomorphic; the converse is very false.

Given affine varieties Y ⊂ An, Y ′ ⊂ Am, a morphism φ : Y → Y ′, and a continuous function f
on Y ′, we can form a continuous function f ◦ φ on Y . If f is regular (i.e. polynomial) then so is
f ◦ φ.

Definition: This k-algebra homomorphism A(Y ′) → A(Y ), f 7→ f ◦ φ is the pullback by φ,
denoted by φ∗.

Example: Consider the morphism φ : A1 → A2 given by t 7→ (t, t2). Then φ∗ maps k[X,Y ]→
k[T ]. Note that I’m calling the variable on A1 T to avoid confusion. Then φ∗ sends X to T and
Y to T 2.

Conversely, given a k-algebra homomorphism α : A(Y ′) → A(Y ) we can build a morphism
α∗ : Y → Y ′; I don’t want to get into the details now but you can think about how to do this.
These ∗ operations have nice properties, e.g. φ∗∗ = φ and (α ◦ β)∗ = β∗ ◦ α∗.

Key fact: The operations ∗ define a bijection

{morphisms Y → Y ′} ↔ {k-algebra homomorphisms A(Y ′)→ A(Y )}

Look at the last question.
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2.10 Next steps

So far we have talked about affine varieties and the global regular functions defined on them
(i.e. ‘polynomial’ functions which are defined on the whole variety). In order to build the full
structure of a variety we need to define a sheaf of regular functions. In particular we need to
understand what the correct definition of a regular function on an arbitrary open set is.

Example: On A1, regular functions are polynomials in a variable X. The function 1/X is
perfectly good at most points but has a singularity at the origin. We’ll say 1/X is regular on the
open subset {X 6= 0} (this is open since its complement is the closed set Z(X)). If 1/X is regular
then 1/Xr had better be regular for all non-negative integers r. And then g/Xr had better be
regular for all r and all polynomials g.

More generally, for a non-zero polynomial f ∈ A = k[X1, . . . , Xn] on An, we define the open
set D(f) to be the {p ∈ An : f(p) 6= 0} and then set the regular functions on D(f) to be the ring

Af :=

{
g

fr
: g ∈ A, r ∈ Z≥0

}
,

a subring of the field of rational functions k(X1, . . . , Xn).
More generally still, for an irreducible affine variety Y , with coordinate ring A(Y ), and a non-

zero function f ∈ A(Y ), we get an open set D(f) in Y defined by {p ∈ Y : f(p) 6= 0}, and we
define the regular functions on D(f) to be

A(Y )f :=

{
g

fr
: g ∈ A(Y ), r ∈ Z≥0

}
.

This is a subring of the function field K(Y ) of Y , which is defined to be the field of fractions of
A(Y ).

If Y is not irreducible, we can’t build a build a field of fractions and we have to be a little
more careful. Need the notion of localisation.

Key fact: The sets D(f) form a basis for the Zariski topology on any affine variety (not
necessarily irreducible), i.e. any open set can be written as a union of sets of this form.

Proof: Take an open set U in an affine variety Y , and let p be a point of U . Write U as
Y \ Z(J) for an ideal J . We want to find an f such that

p ∈ D(f) ⊂ U,

in other words f(p) 6= 0 but f vanishes on Z(J). Since p is not in Z(J), there exists a function in
J not vanishing at p. Take f to be such a function. �

It’s easy to define regular functions on sets of the form D(f), and because of this fact we can
then use sheafification to construct the whole sheaf of regular functions.
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