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LOCAL AND GLOBAL BIFURCATIONS

Attempt THREE questions.

There are four questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 The following set of ordinary differential equations (ODEs) defines a dynamical
system on a two-dimensional spherical surface:

θ̇ = sin θ[cos θ(−λ+ cos 2φ)− sin 2φ],

φ̇ = cos θ(κ− cos 2φ)− sin 2φ,
(1)

where θ and φ are the usual spherical polar co-ordinates denoting latitude and longitude
and λ and κ are real parameters. Through periodicity of the dynamics we may restrict
our attention to the half of the upper hemisphere given by 0 < θ 6 π

2 and 0 6 φ < π.

(a) Show that the system (1) has equilibria at the points P1 : (θ, φ) = (π2 , 0) and P2 :
(θ, φ) = (π2 ,

π
2 ).

(b) Investigate local bifurcations from P1 and show that a codimension-two bifurcation
occurs at the point (λ, κ) = (3,−1). Sketch the bifurcation curves in the (λ, κ) plane.

(c) By suitable expansions, a linear co-ordinate change, and a time rescaling, show that
the dynamics of (1) at the codimension-two point can be written in the form(

u̇
v̇

)
=

(
0 1
0 0

) (
u
v

)
+

(
f(u, v)
g(u, v)

)
+O(4), (2)

where f(u, v) and g(u, v) contain only cubic terms and O(4) denotes terms of order 4 and
higher jointly in u and v.

(d) You may assume that, after a suitable near-identity transformation and a rescaling
have been applied to (2), it can be put in the form

ẋ = y,

ẏ = µ1y − µ2x+ x3 − x2y.
(3)

Briefly discuss the local and global bifurcations of (3). You may assume that the Hopf
bifurcation is supercritical. Hence justify the existence of exactly one curve of global
bifurcations for the original ODEs (1) near (λ, κ) = (3,−1).

(e) Sketch the phase portrait of (3) in each of the four regions of the (µ1, µ2) plane that
contains qualitatively distinct behaviour.
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2 Consider two-dimensional Boussinesq thermal convection in a region 0 6 x 6 L,
0 6 z 6 1, with an imposed uniform rotation Ω about a vertical (z) axis. With the
assumption that the velocity u = (u, v, w) and temperature T depend only on x, z and
time t, the dimensionless PDEs that describe the behaviour of the fluid are:

∂
∂t∇

2ψ + ∂(ψ,∇2ψ)
∂(x,z) = σ∇4ψ + σR ∂θ

∂x − σRΩ
∂v
∂z ,

∂θ
∂t + ∂(ψ,θ)

∂(x,z) = ∇2θ + ∂ψ
∂x ,

∂v
∂t + ∂(ψ,v)

∂(x,z) = σ∇2v + σRΩ
∂ψ
∂z ,

where ψ(x, z, t) is the streamfunction for the x and z components of the velocity field
and the temperature T = 1 − z + θ(x, z, t). σ is the Prandtl number, R is the Rayleigh
number (proportional to the imposed temperature difference) and RΩ is the Taylor number
(propotional to the rotation rate Ω which determines the Coriolis force on the fluid). The
boundary conditions imposed are ψ = ∇2ψ = 0 on all four walls, θ = ∂v

∂z = 0 on z = 0, 1
and ∂θ

∂x = v = 0 on x = 0, L.

(a) Adopt the truncated representation

ψ = 2
√

2β
α a(t) sinαx sinπz,

θ = 2
√

2
β b(t) cosαx sinπz − 1

π c(t) sin 2πz,

v = 2
√

2σπRΩ
αβ d(t) sinαx cosπz + σRΩ

α e(t) sin 2αx,

where α = π/L and β2 = α2 + π2, and derive the truncated model ODEs for weakly
nonlinear rotating convection:

ȧ = −σa+ σrb− σ2r2Ωd,

ḃ = a− b− ac,

ċ = $(−c+ ab),

ḋ = a− σd− ae,

ė = −(4−$)σe+$ad,

where the dot represents d/dτ , τ = β2t, $ = 4π2/β2 and r and rΩ are proportional to R
and RΩ. Determine the constants of proportionality.

(b) Locate the codimension-one and Takens-Bogdanov bifurcations from the trivial solu-
tion, assuming that σ < 1. Sketch the bifurcation curves in the (r, r2Ω) plane.

(c) Determine the value of r2Ω at which the pitchfork bifurcation changes from being
supercritical to being subcritical. Discuss the bifurcation structure in the vicinity of this
point.

(d) Investigate the possibility of a codimension-three bifurcation.
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3 Consider the system of ODEs:

ẋ = x+ P (x, y;µ, ν),
ẏ = −δy +Q(x, y;µ, ν),

(1)

where δ > 1 is a constant, µ and ν are parameters, and the functions P and Q are purely
nonlinear in x and y, i.e.

P (0, 0;µ, ν) = ∂P
∂x (0, 0;µ, ν) = ∂P

∂y (0, 0;µ, ν) = 0,

Q(0, 0;µ, ν) = ∂Q
∂x (0, 0;µ, ν) = ∂Q

∂y (0, 0;µ, ν) = 0.

Assume that when µ = 0 there is a homoclinic orbit that leaves the origin with x > 0 and
returns to the origin with y > 0, while for ν = 0 there is a homoclinic orbit that leaves
the origin with x < 0 and returns to the origin with y < 0.

(a) Show that the dynamics of the ODEs (1) near the origin can be described by iterations
of the 2D map

xn+1 =
{
−µ+A sgn(yn)|xn|δ xn > 0
ν +B sgn(yn)|xn|δ xn < 0

yn+1 = sgn(xn)

assuming that µ and ν are both small, A and B are constants, and we define the function
sgn(z) = z/|z| for z 6= 0, sgn(0) = 0.

(b) Indicate the regions in the (µ, ν) plane in which there are one or two periodic orbits,
paying particular attention to the locations of the global bifurcations. Sketch a phase
portrait of (1) in each region of the (µ, ν) plane that contains qualitatively distinct
behaviour, and also at a point on each global bifurcation curve.

(c) Discuss how the results of the analysis of parts (a) and (b) relate to the analysis of the
planar gluing bifurcation.
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4 The dynamics near a particular codimension-two bifurcation point are given by the
ODEs:

ż = (µ1 + i)z − 2xz,

ẋ = µ2 + x2 + |z|2,
(1)

where z ∈ C and x ∈ R. µ1 and µ2 are real bifurcation parameters.

(a) By transforming to polar co-ordinates z = reiθ, describe fully the local bifurcations
from the equilibria of (1), and sketch a bifurcation diagram in the (µ1, µ2) plane.

(b) Identify a secondary bifurcation in (1) and show that it is a degenerate bifurcation.
You may find the function F (r, x, µ2) = −r(µ2 + 1

3r
2 + x2) useful.

(c) This degeneracy is broken by the addition of the term x2z to the ż equation in (1).
Including this term, use the rescaling r = εu, x = εv, µ1 = ε2λ1, µ2 = ε2λ2, τ = εt to
deduce ODEs for u and v which have the conserved quantity F (u, v, λ2) in the limit ε→ 0.
Sketch contours of constant F in the (u, v > 0) half-plane, in the case λ2 < 0. Give the
value of F that corresponds to the heteroclinic orbits.

(d) By integrating around the heteroclinic orbit for small ε, find the relationship between
λ1 and λ2, and hence between µ1 and µ2, at the global bifurcation. You may find the
substitution v =

√
−λ2 cosφ useful. Indicate this global bifurcation curve on your sketch

from part (a).

(e) Discuss the generation of complex dynamics near the global bifurcation when generic
higher-order terms are added to (1). Your discussion should include the role of the normal
form symmetry, and the dynamics of the Shilnikov map:

yn+1 = −µ+Ayδn cos (B log(yn) + Φ) ,

in the case δ < 1, where A, B and Φ are constants and µ is the bifurcation parameter.
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