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ASTROPHYSICAL FLUID DYNAMICS

Attempt TWO questions.

There are three questions in total.

The questions carry equal weight.

Candidates may bring their notebooks into the examination. The following equations
may be assumed.

Dρ

Dt
+ ρ divu = 0

ρ
Du
Dt

= −∇p− ρ∇Φ + j ∧B

ρ
De

Dt
=

p

ρ

Dρ

Dt
+ div (λ∇T ) + ε

divB = 0; j = µ−1
o curlB

∇2Φ = 4πGρ

∂B
∂t

= curl (u ∧B)

.
p = (γ − 1)ρe =

R
µ

ρT

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 A large spherical cloud of gas, radius Ro, is centred at the origin, and has uniform
density ρoo, and zero pressure. At time t = 0 it begins to collapse from rest under its own
gravity. At time t the velocity field within the cloud may be written

uo(r, t) = r

[
Ṙ(t)
R(t)

]
,

where R(t) is the cloud radius and r the radius vector from the origin. Show that the
density remains uniform, and that at time t the density is

ρo(t) = ρoo [Ro/R(t)]3 .

Show that the gravitational force within the cloud is

g = −r
[
4
3
πGρo(t)

]
,

and hence that
R2R̈ = −4

3
πGρooR

3
o .

Show that the collapse is described implicitly by

R =
1
2
Ro(1 + cos φ),

and
Ct =

1
2
Ro(φ + sinφ),

where
C2 = 8πGρooR

2
o/3.

As the cloud collapses (still with zero pressure) it is subject to small perturbations.
Ignoring the effects of the cloud boundaries (or, assuming the cloud is infinitely large) we
assume that the perturbations take the form

ρ(r, t) = ρo(t) + ρ′(r, t),

with
ρ′(r, t) = ρ1(t) exp(ik.r),

and where

k(t) = q/R(t), and q is independent of t. Explain the physical motivation for such
an assumption.

Using this assumption show that

ρ̇1 +
3Ṙ

R
ρ1 +

iρo

R
q.u1 = 0,

where u1(t) is the analogous velocity perturbation.
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Hence, or otherwise, show that for compressive modes the fractional density
perturbation δ(t) ≡ ρ1(t)/ρo(t) satisfies the equation

δ̈ +
2Ṙ

R
δ̇ − 4πGρo(t)δ = 0.

Show that one solution of this equation is given (implicitly) by

δ =
sinφ

(1 + cos φ)2
.

By considering the behaviour of the solutions as R → 0 or otherwise, show that
this is the only growing solution as the collapse proceeds.
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2 Show that the magnetohydrodynamic equations for a non-viscous, infinitely con-
ducting fluid which obeys the perfect gas law may be written in the form

∂ρ

∂t
+ div (ρu) = 0,

∂

∂t
(ρu) + div (ρuu + pI − T ) = −ρ∇Φ,

and
∂

∂t

(
1
2
ρu2 + ρe + ρΦ +

1
2µo

B2

)

+ div
[
ρu

(
e +

p

ρ
+

1
2
u2 + Φ

)
+ µ−1

o (B ∧ u) ∧B
]

= ρ
∂Φ
∂t

,

where I is the unit tensor and the tensor T is given by

T = µ−1
o

(
BB− 1

2
B2I

)
.

Show that in a steady hydromagnetic shock in which the magnetic field and the
flow velocity are normal to the shock front, the jump conditions across the shock front
are the usual Rankine-Hugoniot conditions. Give a brief physical explanation of why the
magnetic field plays no role in this case.

Now consider the jump conditions for a hydromagnetic shock in which the magnetic
field is parallel to the shock front and the flow velocity is normal to it. Show that
B1/ρ1 = B2/ρ2, where the subscripts 1, 2 refer to pre- and post-shock quantities,
respectively.

Show that the jump conditions concerning conservation of mass and momentum
imply that

p2 = p1 + ρ1u
2
1

(
1− ρ1

ρ2

)
+

B2
1

2µo

(
1− ρ2

2

ρ2
1

)
.

Use the jump condition concerning energy conservation to obtain another expression
for p2 in terms of pre-shock variables.

Hence, or otherwise show that

(2− γ)v2
A1x

2 +
[
(γ − 1)u2

1 + 2c2
1 + γv2

A1

]
x− (γ + 1) u2

1 = 0,

where x = ρ2/ρ1, c2
1 = γp1/ρ1 and v2

A1 = B2
1/µoρ1.

Deduce that for the shock to exist we require that

v2
1 > c2

1 + v2
A1,

and give a physical interpretation of this condition.

[You may assume that div (a ∧ b) = b . curl a− a . curl b.]
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3 An incompressible fluid of uniform density ρ has a uniform magnetic field Bo =
(B, 0, 0), in Cartesian coordinates, and a shearing velocity field uo = (U(z), 0, 0).

The flow is subject to small perturbations of the form

u = uo + [u(z), v(z), w(z)] exp (iσt + ikxx + ikyy) ,

B = Bo + [bx(z), by(z), bz(z)] exp (iσt + ikxx + ikyy) ,

and
p = po + p1(z) exp (iσt + ikxx + ikyy) .

From the linearized equation of motion show that

iρ (σ + kxU) w −B

(
ikxbz −

dbx

dz

)
= −dp1

dz
,

(we take units in which µo = 1), and derive the corresponding equations for u and v.

From the linearized induction equation show that

bx =
kxB

σ + kxU

{
u− iU ′w

σ + kxU

}
,

and obtain analogous expressions for by and bz in terms of the perturbed velocity
components.

Substitute these expressions for the perturbed components of the magnetic field
into the linearized equations of motion.

From the x− and y−components of the linearized equation of motion show that
the z-component of the vorticity, ζ = ikxv − ikyu, is given by

ζ =
kyU ′w

σ + kxU
.

Deduce that the y-component of the linearized equation of motion simplifies to

iρ (σ + kxU) v = −ikyp1.

Use div u = 0 to show that

ik2p1 = ρ (σ + kxU)
dw

dz
− ρkxU ′w,

where k2 = k2
x + k2

y.

Combine div u = 0 with the expression for ζ to show that

ik2u = −

[
kx

dw

dz
+

k2
yU ′

σ + kxU
w

]
.
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Hence, or otherwise, obtain an equation for w in the form

d

dz

{
ρ (σ + kxU)

dw

dz
− ρkxU ′w

}

= k2ρ (σ + kxU) w + k2
xB2

{
d

dz

(
dw/dz

σ + kxU

)
− k2w

σ + kxU

}

−k3
xB2 d

dz

{
U ′w

(σ + kxU)2

}
(∗)

Consider a shear layer at z = 0, so that

U(z) =
{

U2 z > 0
U1 z < 0 ,

where U1 and U2 are constants. Show that in this case, the solutions of (*) for which
w/ (σ + kxU) is continuous and obey suitable boundary conditions as |z| → ∞ are

w =
{

A (σ + kxU2) e−kz z > 0
A (σ + kxU1) ekz z < 0

for some constant A and for k > 0.

By integrating (*) from z = −ε to z = +ε and letting ε → 0, show that

ρ (σ + kxU2)
2 + ρ (σ + kxU1)

2 = 2k2
xB2.

Deduce that the shear flow is stable if (U1 − U2)
2

< 4B2/ρ.

[Hint: You may assume the identity: curl (a∧b) = (b .∇)a− (a .∇)b + a div b−
b div a.]
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