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WAVE THEORY

Attempt no more than THREE questions. Little credit will be given for fragments.

There are five questions in total.

The questions carry equal weight.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Write an essay on one of the following topics.

Either: The use of transform methods to investigate the behaviour of a fluid-loaded
elastic plate undergoing time-periodic line forcing. You may assume that the motion of
the plate, which lies along the x-axis when at rest, is governed by the equation

m
∂2η

∂t2
+ β

∂4η

∂x4
= F (x, t)− p(x, 0, t)

where η(x, t) is the transverse displacement, m the mass per unit length, β the bending
stiffness, F the forcing and p(x, y, t) the fluid pressure.

Include in your essay a discussion of at least the following points: calculation of
the plate displacement; the far-field in the fluid; the possible presence of other waves (no
detailed calculations are required); the difference between subsonic and supersonic wave
components; and the power radiated away from the plate in the y-direction.

Or: The use of the Wiener-Hopf technique to solve the Sommerfeld problem of
diffraction of a plane wave by an edge, i.e. solve

(∇2 + k2
0)φ = 0

subject to
∂φ

∂y
+

∂φi

∂y
= 0 on y = 0, x < 0 ,

where
φi = exp(−ik0x cos θ0 − ik0y sin θ0 − iωt)

is the incident potential, φ(x, y) exp(−iωt) is the scattered potential and k0 = ω/c0.

Your essay should include a derivation of expressions for the geometrical optics field
and the far-field form of the diffracted field.

[You may quote without proof the result∫
f(k) exp(ikr cos θ − γr |sin θ|) dk ∼

√
2πk0/r f(k0 cos θ) |sin θ| exp(ik0r − iπ/4)

as r → ∞, where γ2 = k2 − k2
0 and the integration is taken along the steepest descent

contour (which crosses the real k-axis at k0 cos θ and k0 sec θ). You should give a clear
definition of the branch cuts which define γ.]
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2 An incompressible inviscid fluid flows along a pipe with circular cross-section of
radius a. The basic flow is U(r)ẑ, where r is the cylindrical radial coordinate and ẑ is a
unit vector along the axis of the pipe. Considering only axisymmetric disturbances, obtain
an equivalent of Rayleigh’s stability equation in the form(

U − c
)(

r(φ′/r)′ − k2φ
)
− r(U ′/r)′φ = 0,

where φ(r) is the mode shape of the disturbance, k the axial wavenumber, c the wave speed,
and a prime denotes differentiation with respect to r. What are the relevant boundary
conditions?

For real values of k, is there an equivalent of Rayleigh’s inflection-point theorem?

Now allow complex k, and consider Poiseuille flow in which U(r) = U0(1− r2/a2),
where U0 is a constant. Assume that U 6= c for all r. By considering r−nφ for a suitable
choice of n, or otherwise, find an explicit expression for the disturbance mode shape.

How satisfactory are these results, and why? In particular, how useful are they
for establishing stability criteria? Might including viscous terms make any difference?
(No calculations are required, but you should indicate very briefly what steps might be
involved and how your results might be affected.)

[Hints: you may assume the following results in this question.

Let u and v be arbitrary vectors where u = ur r̂+uθθ̂+uz ẑ and v = vr r̂+vθθ̂+vz ẑ,
in which r̂, θ̂ and ẑ are appropriate unit basis vectors in cylindrical polar coordinates
(r, θ, z). Then

v .∇u =
{
v .∇ur −

vθuθ

r

}
r̂ +

{
v .∇uθ +

vθur

r

}
θ̂ +

{
v .∇uz

}
ẑ

where, for any scalar Φ(r, θ, z),

∇Φ =
∂Φ
∂r

r̂ +
1
r

∂Φ
∂θ

θ̂ +
∂Φ
∂z

ẑ.

The Stokes streamfunction Ψ(r, z, t) for axisymmetric flow corresponds to a velocity
field

u = −1
r

∂Ψ
∂z

r̂ +
1
r

∂Ψ
∂r

ẑ.

The modified Bessel equation is

z2y′′ + zy′ − (z2 + ν2)y = 0,

where ν is a constant. Its general solution is y = AIν(z) + BKν(z), where A and B
are arbitrary constants and Iν , Kν are the modified Bessel functions of order ν. For
the value or values of ν relevant to this problem, as z → 0, Iν(z) ∼ ( 1

2z)ν/ν! while
Kν(z) ∼ 1

2 (ν − 1)!( 1
2z)−ν ; and the roots of Iν all lie on the imaginary axis.]
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3 (a) In a triangular jet of half-width a, varicose instability waves of wavenumber k
and frequency ω have dispersion relation

D(k, ω) ≡ 2ω + e−2ka − 1 = 0.

Can these modes exhibit absolute instability, convective instability, or neither? Illustrate
your answer by explicit reference to the Briggs–Bers method for ensuring causality, in the
complex k- and ω-planes.

(b) When ka� 1, approximate the dispersion relation by

D(k, ω) ≈ Dapprox(k, ω) ≡ 2ω − 2ka + 2k2a2.

Verify that the model equation

∂A

∂t
= −a

∂A

∂x
− ia2 ∂2A

∂x2

has an identical dispersion relation. Use this equation from now on to model the jet.

Consider a jet of slowly varying width, so that a is now a function of the slow spatial
scale X = εx where ε � 1. The jet is subjected to time-periodic forcing of frequency Ω
at the origin, where Ω is small, and responds with a wave of wavenumber

k+(Ω; X) =
1−

√
1− 4Ω

2a(X)
≈ Ω

a(X)

downstream of the forcing. By using a multiple-scales WKBJ-type approximation, or
otherwise, show that the amplitude envelope of the wave develops like a−Ω.
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4 Starting from the equations of mass and momentum conservation, derive Lighthill’s
equation for the acoustic density fluctuation ρ′(x, t) in the form

∂2ρ′

∂t2
− c2

0∇2ρ′ =
∂2Tij

∂xi∂xj
, (1)

where Tij is to be determined.

(i) Using equation (1), together with the free-space Green’s function for the wave
equation,

G(x, t) =
δ(t− |x|/c0)

4π|x|c2
0

,

show that the far-field sound generated by a compact quadrupole distribution is

ρ′(x, t) =
xixjS̈ij(t− |x|/c0)

4πc4
0|x|3

where Sij(t) =
∫

Tij(y, t)dV (2)

and ˙ denotes differentiation with respect to t.

Show further that ρ′ = O(m4), where m is the fluctuation Mach number.

(ii) Suppose now that a moving body, surface F (x, t) = 0, is introduced into the
(inviscid) fluid, so that the right hand side of equation (1) has the additional terms

+
∂

∂t
(ρ0Vnδ(F ))−∇.(pnδ(F )) ,

where ρ0 is the mean density of the fluid, Vn is the body normal velocity, n is the (outward)
body normal and p is the fluid pressure. Show that the expression in equation (2) for the
far-field density fluctuation in the compact limit is augmented by

+
ρ0

4π|x|c2
0

V̇(t− |x|/c0) +
1

4π|x|2c2
0

Ḟ(t− |x|/c0) ,

where
V(t) =

∫
Vn(y, t)dS F(t) =

∫
p(y, t)x.ndS

and the integrals are taken over the body surface.

(iii) A stationary air bubble in water executes small pulsations in such a way that its
radius is a0+a1(t), where a0 is a constant, |a1/a0| � 1 and |ȧ1/c0| � 1. By assuming that
the fluid motion close to the bubble can be modelled as being strictly incompressible and
irrotational, calculate explicitly the contributions to the total far-field sound represented
by parts (i) and (ii) above.

Comment on the relative orders of magnitudes of the contributions from (i) and
(ii).

[Hint: Recall that
∫ xixj

r6 dV = λδij for some λ, to be determined, where the
integration is completed over all r ≥ a0. Note also that in this limit Tij ≈ ρ0uiuj.]
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5 (a) Consider the equation

ε
d2y

dx2
+ (1 + x)

dy

dx
+ y = 0 with y(0) = y(1) = 1 .

Find the first two terms in the inner and outer expansions in the limit ε → 0.
Calculate a uniformly-valid approximation to y which is correct up to and including O(ε).

Without further detailed calculation, briefly describe how you would attempt to
determine the asymptotic solution of:

(i)

ε
d2y

dx2
− (1 + x)

dy

dx
+ y = 0 with y(0) = y(1) = 1 .

(ii)

ε
d2y

dx2
+ x

dy

dx
+ y = 0 with y(0) = y(1) = 1 .

(b) Use the method of multiple scales to determine the small-ε approximation, valid
for time t = O(1/ε), to the solution of the equation

d2y

dt2
+ ε

(
dy

dt

)n

+ y = 0 with y(0) = 1,
dy

dt(0)
= 0 ,

where n is a given positive integer. In your answer distinguish carefully between the cases
of n even and n odd.

In the case of n large and odd, describe the behaviour of your solution for different
orders of magnitude of t.
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