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1 Let r ∈ N and ε > 0. Prove that there exist d(r, ε) and n0(r, ε) such that if G is a
graph with |G| = n ≥ n0 and δ(G) ≥ (1−1/r+ε)n then Kr+1(t) ⊂ G, where t = bd log nc.

State the Erdős-Stone theorem and explain how it follows from the result just
proved.

Let F be the graph of order 6 formed by removing 3 independent edges from K6.
Let ex(n;H) = max{e(G) : |G| = n, F 6⊂ G}. What is limn→∞ ex(n;H)/

(
n
2

)
?

Show that ex(n;H) > t2(n) for n ≥ 3, where t2(n) is the size of the bipartite Turán
graph T2(n).

2 Prove Szemerédi’s Regularity Lemma. [You may assume the definition of ε-
uniformity, that if U ′ ⊂ U and W ′ ⊂ W satisfy |U ′| ≥ (1 − δ)|U | and |W ′| ≥ (1 − δ)|W |
then |d(U ′,W ′) − d(U,W )| ≤ 2δ, and also any quantitative form of the Cauchy-Schwarz
inequality that you need.]

Let G be a graph of order n with n2/6 edges. Show that there exists c > 0
such that V (G) contains a 1/8-uniform pair of subsets (U,W ) with d(U,W ) > 1/4 and
|U | = |W | ≥ cn.

3 Either prove that every oriented tree of order n is contained in every tournament of
order 3n− 3, but that not every oriented tree of order n is contained in every tournament
of order 2n− 3,

Or prove that every strong digraph D is spanned by α(D) circuits, but never by
α(D) − 1 circuits. [You may assume Dilworth’s theorem, and that every strong digraph
has a coherent ordering.]

4 Let F be the Fano plane. Describe, making clear the main ideas, a proof that
ex(n;F ) =

(
n
3

)
−

(bn/2c
3

)
−

(dn/2e
3

)
.
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