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1 State Hölder’s inequality.

Suppose that 1/p1 + · · · + 1/pn = 1/r 6 1 and that fi ∈ Lpi
for 1 6 i 6 n. Show

that f1 . . . fn ∈ Lr and
||f1 . . . fn||r 6 ||f1||p1 . . . ||fn||pn .

Suppose that K is a compact subset of R4. Let Kj be the image of K under the
orthogonal projection onto the subspace orthogonal to the j-th axis. Show that

λ4(K) 6 (
4∏

j=1

λ3(Kj))1/3.

[Here λd denotes d-dimensional Lebesgue measure.]

[You may assume the truth of the corresponding result, and related results, in
dimension 3.]

2 Suppose that (xi)∞i=1 and (yi)∞i=1 are decreasing sequences of positive numbers,
that

∑n
i=1 xi 6

∑n
i=1 yi for each n and that

∑∞
i=1 xi =

∑∞
i=1 yi. Show that there exists a

doubly stochastic matrix P = (pij) such that xi =
∑∞

j=1 pijyj , for each i.

3 (i) What does it mean to say that a sublinear mapping S of L1(R) into M(R) (the
measurable functions on R) is of weak type (1, 1)?

(ii) Suppose that (Tr)r>0 is a family of linear mappings from L1(R) into M(R)
and that S is a sublinear mapping of L1(R) into M(R) which is of weak type (1, 1), such
that

(a) |Tr(g)| 6 S(g) for all g ∈ L1(R), r > 0, and

(b) there is a dense subspace F of E such that Tr(f) → T0(f) almost everywhere, for
f ∈ F , as r → 0.

Show that if g ∈ E then Tr(g) → T0(g) almost everywhere, as r → 0.

(iii) If f ∈ L1(R), let

mu(f)(x) = sup{1
r

∫ y+r

y

|f(t)| dt : r > 0, y < x < y + r}.

Show that mu is of weak type (1, 1). [You may quote any covering lemma that you need.]

(iv) Suppose that f ∈ L1(R). Let F (x) =
∫ x

0
f(t) dt. Show that F is differentiable

almost everywhere.
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4 (i) Suppose that 1 6 p0 < p1 < ∞, that 0 < θ < 1 and that 1/p = (1−θ)/p0+θ/p1.
Show that

Lp0 ∩ Lp1 ⊆ Lp ⊆ Lp0 + Lp1

and that if f ∈ Lp then we can write f = g + h with ‖g‖1−θ
p0

‖h‖θ
p1

6 ‖f‖p.

(ii) Suppose further that 1 6 q0, q1 6 ∞ and 1/q = (1− θ)/q0 + θ/q1. In the proof
of the Riesz-Thorin Theorem it is shown that if T is a linear mapping from Lp0 + Lp1

to Lq0 + Lq1 with ||T : Lpi → Lqi || = Mi, for i = 0, 1, then if f is a simple function,
||T (f)||q 6 M1−θ

0 Mθ
1 ||f ||p. Show how this result extends to any f ∈ Lp.

(iii) Suppose that 2 < p < ∞ and that 1/p + 1/p′ = 1. Show that if x and y are
complex numbers then

(
1
2 (|x + y|p + |x− y|p)

)1/p
6

(
|x|p

′
+ |y|p

′
)1/p′

.

Show further that if f and g are in Lp then

(
1
2 (‖f + g‖p

p + ‖f − g‖p
p)

)1/p
6

(
‖f‖p′

p + ‖g‖p′

p

)1/p′

.

[Hint: Use Minkowski’s inequality in Lp/p′
.]

5 Suppose that a1, . . . , ad are vectors in a normed space E and that ε1, . . . , εd are
independent Bernoulli random variables. Show that∥∥∥∥∥

d∑
i=1

εiai

∥∥∥∥∥
L2(E)

6
√

2

∥∥∥∥∥
d∑

i=1

εiai

∥∥∥∥∥
L1(E)

.

END OF PAPER
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