

MATHEMATICAL TRIPOS Part III

Tuesday, 7 June, 2011 9:00 am to 11:00 am

PAPER 12

COMBINATORICS

Attempt no more than **THREE** questions.

There are **FOUR** questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

State and prove the LYM inequality.

A set system $A \subset \mathcal{P}([n])$ has the property that for any distinct $A, B \in \mathcal{A}$ we have |A - B| > 1 and |B - A| > 1.

By considering the shadow of A, show that

$$\sum_{r=1}^{n} \frac{r|\mathcal{A}_r|}{\binom{n}{r-1}} \leqslant 1$$

where as usual A_r denotes $\{A \in A : |A| = r\}$.

Using the fact that $(n+1)\binom{n}{r-1} = r\binom{n+1}{r}$, deduce from this that

$$|\mathcal{A}| \leqslant \frac{1}{n+1} \binom{n+1}{|(n+1)/2|}.$$

By considering the sum of the elements of a set $A \in [n]^{(\lfloor n/2 \rfloor)}$, show that there exists a set system $\mathcal{A} \subset \mathcal{P}([n])$ satisfying the above condition with

$$|\mathcal{A}| \geqslant \frac{1}{n} \binom{n}{\lfloor n/2 \rfloor}.$$

2

State the vertex-isoperimetric inequality in the discrete cube (Harper's Theorem). Explain carefully how the Kruskal-Katona Theorem may be deduced from Harper's Theorem.

State the Erdős-Ko-Rado Theorem, and give two proofs: one using the Kruskal-Katona Theorem and one using cyclic orderings.

Let $\mathcal{A}, \mathcal{B} \subset [n]^{(r)}$, where $r \leq n/2$. Show that if $|\mathcal{A}|, |\mathcal{B}| > \binom{n-1}{r-1}$ then there exist $A \in \mathcal{A}$ and $B \in \mathcal{B}$ with $A \cap B = \emptyset$.

3

State and prove the vertex-isoperimetric inequality in the grid $[k]^n$.

[You may assume that the theorem you are proving holds in the two-dimensional $grid \ [k]^2$.]

Which of the following are always true and which can be false? Give proofs or counterexamples as appropriate.

- (i) If k is even and A is a subset of $[k]^2$ of size $k^2/2$ then the boundary of A has size at least k.
- (ii) If k is even and A is a subset of $[k]^3$ of size $k^3/2$ then the boundary of A has size at least $k^2 100k$.

4

State and prove the Uniform Covers Theorem.

State and prove the Bollobás-Thomason Box Theorem.

Let S be a body in \mathbb{R}^4 of volume 1 such that $|S_{123}| = |S_{124}| = |S_{134}| = 1$. What are the possible values of $|S_{234}|$?

END OF PAPER