

MATHEMATICAL TRIPOS Part III

Thursday, 2 June, 2011 1:30 pm to 4:30 pm

PAPER 13

ALGEBRAIC TOPOLOGY

Attempt no more than **THREE** questions.

There are **FIVE** questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let X be the quotient space $F \times [0,1]/\sim$, where $(x,1)\sim (\phi(x),0)$ for a map $\phi:F\to F$. You may assume that $X\supset F$ has the homotopy type of a cell complex together with a sub-cell-complex. By considering the pairs $(F\times [0,1],F\times \{0,1\})$ and (X,F), or otherwise, construct a long exact sequence

$$\cdots \to H_{i+1}(X) \to H_i(F) \xrightarrow{\phi_* - id_*} H_i(F) \to H_i(X) \to H_{i-1}(F) \xrightarrow{\phi_* - id_*} H_{i-1}(F) \to \cdots$$

Compute $H_*(X; \mathbb{Z})$ in the following two cases:

- 1. F is the 1-skeleton of a cube, and ϕ is the map which rotates the cube by $2\pi/3$ along a long diagonal;
- 2. F is the complex projective plane \mathbb{CP}^2 , and ϕ is the map which in homogeneous co-ordinates takes $[x:y:z] \mapsto [x^2:y^2:z^2]$.

Can real projective space \mathbb{RP}^k be obtained from the above construction for some (F,ϕ) ? Justify your answer.

 $\mathbf{2}$

A space X_{ϕ} is obtained from the 3-dimensional torus T^3 by attaching a 2-dimensional closed disc D^2 along a map $\phi: \partial D^2 \to T^3$. Compute the homology groups $H_*(X_{\phi}; \mathbb{Z})$, explaining carefully how they depend on ϕ .

Prove that T^3 admits two distinct fixed-point-free involutions (homeomorphisms of order two), which are not conjugate in the group of all homeomorphisms. For which homotopy classes of maps ϕ does X_{ϕ} admit a fixed-point-free involution? Justify your answer.

Let M be a closed n-dimensional manifold and N be obtained by attaching a single j-disc B^j to M for some $1 \le j \le n$, via a map $S^{j-1} \to M$. If n = 3, can N be homotopy equivalent to a closed manifold? What if n = 4? Justify your answers.

3

Define the *cup-product* on cohomology. State the Thom isomorphism theorem, and use it to compute the cohomology ring $H^*(\mathbb{CP}^n;\mathbb{Z})$ of complex projective space.

- 1. By considering the cup-product on relative cohomology, or otherwise, determine the minimal number of contractible sets needed to cover \mathbb{CP}^3 .
- 2. What is the smallest d>0 for which there is a map $\mathbb{P}^1\times\mathbb{P}^2\to\mathbb{P}^3$ of degree d?

Justify your answers.

4

Let $\kappa \subset S^3$ be a *knot* in the 3-dimensional sphere, i.e. the image of a smooth embedding $\phi_{\kappa}: S^1 \to S^3$ of a circle in the 3-sphere. Compute $H^*(S^3 \setminus \kappa; \mathbb{Z})$.

For κ_1 and κ_2 knots in S^3 with disjoint images, define a linking number $lk(\kappa_1, \kappa_2) \in \mathbb{Z}$ with the property that if $lk(\kappa_1, \kappa_2) \neq 0$, then the knots cannot be isotoped into disjoint balls in the 3-sphere. Now view $S^3 = \partial B^4$ as the boundary of the 4-dimensional ball. Suppose κ_1 and κ_2 bound disjoint smoothly embedded surfaces in the 4-ball, each of which has trivial normal bundle. What are the possible values of $lk(\kappa_1, \kappa_2)$? Justify your answer.

The knot κ is *fibred* of genus g if there is a continuous map $\pi: S^3 \setminus \kappa \longrightarrow S^1$ which is a fibre bundle, with fibre the interior of a surface of genus g with boundary κ .

- 1. Prove that the trivial knot $U = \{x^2 + y^2 = 1\} \subset \mathbb{R}^2 \subset \mathbb{R}^3 \subset S^3$ is fibred of genus 0.
- 2. If κ is fibred of genus 1, explain how to associate a matrix $A \in SL_2(\mathbb{Z})$ to the fibration. Can the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ arise in this way? Justify your answer.

5

For closed manifolds M and N of dimension n, define the connect sum M # N of M and N. Prove necessary and sufficient conditions on M and N for M # N to be orientable.

Let $X = \mathbb{CP}^2 \# \mathbb{CP}^2$. Compute $H^*(X; \mathbb{Z})$ as a ring, giving detailed statements of any general results you invoke.

Let Σ_4 denote a closed surface of genus 4.

- 1. Prove there is an embedding $\Sigma_4 \hookrightarrow X$ whose image represents a non-trivial homology class. Are any two such embeddings isotopic?
- 2. Prove there is no embedding $\iota: \Sigma_4 \hookrightarrow X$ for which an open neighbourhood of the image $im(\iota)$ is homeomorphic to the total space of the tangent bundle $T\Sigma_4$.

END OF PAPER