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1

Let X be the quotient space F × [0, 1]/ ∼, where (x, 1) ∼ (φ(x), 0) for a map
φ : F → F . You may assume that X ⊃ F has the homotopy type of a cell complex
together with a sub-cell-complex. By considering the pairs (F × [0, 1], F × {0, 1}) and
(X,F ), or otherwise, construct a long exact sequence

· · · → Hi+1(X) → Hi(F )
φ∗−id∗
−−−−→ Hi(F ) → Hi(X) → Hi−1(F )

φ∗−id∗
−−−−→ Hi−1(F ) → · · ·

Compute H∗(X;Z) in the following two cases:

1. F is the 1-skeleton of a cube, and φ is the map which rotates the cube by 2π/3
along a long diagonal;

2. F is the complex projective plane CP
2, and φ is the map which in homogeneous

co-ordinates takes [x : y : z] 7→ [x2 : y2 : z2].

Can real projective space RP
k be obtained from the above construction for some

(F, φ) ? Justify your answer.

2

A spaceXφ is obtained from the 3-dimensional torus T 3 by attaching a 2-dimensional
closed disc D2 along a map φ : ∂D2 → T 3. Compute the homology groups H∗(Xφ;Z),
explaining carefully how they depend on φ.

Prove that T 3 admits two distinct fixed-point-free involutions (homeomorphisms
of order two), which are not conjugate in the group of all homeomorphisms. For which
homotopy classes of maps φ does Xφ admit a fixed-point-free involution ? Justify your
answer.

Let M be a closed n-dimensional manifold and N be obtained by attaching a single
j-disc Bj to M for some 1 6 j 6 n, via a map Sj−1 → M . If n = 3, can N be homotopy
equivalent to a closed manifold ? What if n = 4 ? Justify your answers.
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3

Define the cup-product on cohomology. State the Thom isomorphism theorem, and
use it to compute the cohomology ring H∗(CPn;Z) of complex projective space.

1. By considering the cup-product on relative cohomology, or otherwise, determine the
minimal number of contractible sets needed to cover CP3.

2. What is the smallest d > 0 for which there is a map P
1 × P

2 → P
3 of degree d ?

Justify your answers.

4

Let κ ⊂ S3 be a knot in the 3-dimensional sphere, i.e. the image of a smooth
embedding φκ : S1 → S3 of a circle in the 3-sphere. Compute H∗(S3\κ;Z).

For κ1 and κ2 knots in S3 with disjoint images, define a linking number lk(κ1, κ2) ∈
Z with the property that if lk(κ1, κ2) 6= 0, then the knots cannot be isotoped into disjoint
balls in the 3-sphere. Now view S3 = ∂B4 as the boundary of the 4-dimensional ball.
Suppose κ1 and κ2 bound disjoint smoothly embedded surfaces in the 4-ball, each of
which has trivial normal bundle. What are the possible values of lk(κ1, κ2) ? Justify your
answer.

The knot κ is fibred of genus g if there is a continuous map π : S3\κ −→ S1 which
is a fibre bundle, with fibre the interior of a surface of genus g with boundary κ.

1. Prove that the trivial knot U = {x2 + y2 = 1} ⊂ R
2 ⊂ R

3 ⊂ S3 is fibred of genus 0.

2. If κ is fibred of genus 1, explain how to associate a matrix A ∈ SL2(Z) to the

fibration. Can the matrix

(

1 1
0 1

)

arise in this way ? Justify your answer.
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For closed manifolds M and N of dimension n, define the connect sum M#N of M
and N . Prove necessary and sufficient conditions on M and N for M#N to be orientable.

Let X = CP
2#CP

2. Compute H∗(X;Z) as a ring, giving detailed statements of any
general results you invoke.

Let Σ4 denote a closed surface of genus 4.

1. Prove there is an embedding Σ4 →֒ X whose image represents a non-trivial homology
class. Are any two such embeddings isotopic ?

2. Prove there is no embedding ι : Σ4 →֒ X for which an open neighbourhood of the
image im(ι) is homeomorphic to the total space of the tangent bundle TΣ4.

END OF PAPER
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