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1

Define the cotangent bundle T ∗M for a smooth manifold M . By constructing an

appropriate family of charts, show that T ∗M has a smooth structure making it into a

vector bundle over M . Show further that the vector bundle T ∗M can be endowed with

an inner product varying smoothly with the fibres.

Now let M be the unit sphere S2 and consider the subset Y of T ∗S2 consisting of

all the unit vectors in cotangent spaces. Show that the vector bundle structure on T ∗S2

induces on Y structure of a principal S1-bundle over S2. Is Y isomorphic to a product

bundle S2 × S1? Justify your answer.

[Existence of a partition of unity may be assumed without proof, provided the result is

accurately stated. You may assume that there are no continuous nowhere vanishing vector

fields on S2.]

2

Define what is meant by a Lie group G and left-invariant vector fields on G. Show

that if X and Y are two left-invariant vector fields on G, then their Lie bracket [X,Y ] is

left-invariant and that the space of left-invariant vector fields on G is finite dimensional.

Let Xi, i = 1, . . . ,m, be a basis of left-invariant vector fields on G. Show that

the identities ωi(Xj) = δij (δij is the Kronecker delta) determine smooth 1-forms ωi,

i = 1, . . . ,m, on G which are linearly independent at each point in G . Show further

that the 1-forms ωi satisfy

L∗

g(ω
i) = ωi, for every g ∈ G,

where Lg(h) = gh for each h ∈ G. Let Ck
ij be a set of real constants determined by

[Xi,Xj ] =
∑

k C
k
ijXk. Prove that, for each k,

dωk = −
∑

16i<j6m

Ck
ijω

i ∧ ωj.

[You may assume the identity dω(X,Y ) = Xω(Y ) − Y ω(X) − ω([X,Y ]), for a 1-form ω

and vector fields X,Y .]
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3

Let A be a connection on a vector bundle E. Using local coordinates on the base

manifold and a local trivialization of E, give an explicit formula for the covariant derivative

dA induced by A and acting on sections of E. Explain how to extend dA, using an

appropriate version of the Leibniz rule, to the differential forms with values in E and to

the differential forms with values in the endomorphism bundle EndE. For both cases,

include explicit formulae for dA in local trivializations.

Define the curvature F (A) of a connection A, showing that F (A) is a well-defined

2-form with values in EndE. Prove the Bianchi identity dAF (A) = 0

Prove that if E has rank 1 and A is a connection on E and a is a 1-form on the base

manifold, then A + a is a connection with curvature F (A + a) = F (A) + da. Determine,

giving justification, a more general version of the latter formula valid when the rank of E

is greater than 1.

4

Define geodesic coordinates on a Riemannian manifold M . Show, stating clearly

any preliminary results that you use, that geodesic coordinates exist on a neighbourhood

of any point p ∈M .

State and prove Gauss’ Lemma.

[You may assume without proof that the length of |γ̇(t)| is constant for any geodesic γ(t).]

5

Let M be an oriented Riemannian manifold with a metric g. Define the volume

form ωg on M , showing that ωg is well-defined. Define the Hodge star operator ∗ and

compute its square on p-forms.

Now suppose that M is compact. Recall that the linear operator δ is defined by

δψ = (−1)n(p+1)+1∗d∗ψ if ψ is a p-form on M , p > 0, n = dimM , and δf = 0 if f is a

function. Show that δ is the formal adjoint of d with respect to the L2 inner product.

Define the Laplace–Beltrami operator ∆ and state the Hodge decomposition theo-

rem. Show that if ∆ψ = λψ for some real number λ and some p-form ψ 6= 0 (p > 0), then

λ > 0.
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