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1

(i) Define Morse function.

(ii) State the Morse Lemma.

(iii) Define the Morse index.

(iv) Show that being Morse is a C2-open condition.

(v) State the parametric transversality theorem.

(vi) Prove that Morse functions are dense inside the space of continuous functions.

(vii) Prove that if M is a closed manifold with a Morse function which has exactly two
critical points, then M is homeomorphic to a sphere.

2

Let M be a closed manifold, and let f : M → R be Morse.

(i) Define the moduli space of −∇f trajectories.

(ii) State the Transversality Theorem for these moduli spaces.

From now on, assume that transversality holds for these moduli spaces.

(iii) Prove that the moduli space of −∇f trajectories between critical points p, q of index
difference |p| − |q| = 1 are compact.

(iv) State a theorem describing a natural compactification of the moduli spaces when
|p| − |q| = 2.

(v) Describe this compactification in the case of M = RP 2. [You do not need to write a
formula for f , it suffices that you draw the flowlines for an f that you have chosen]

Part III, Paper 15



3

3

(i) Define Fredholm map, Fredholm operator, Fredholm index.

(ii) Explain how the operator

∂s +As : W
1,2(R,Rm) → L2(R,Rm)

arises in Morse homology, where the matrices As → A±∞ as s → ±∞, and where
A±∞ is invertible and symmetric.

(iii) Prove that ∂s +As is Fredholm.
[You may quote the Closed Range Lemma without proof]

(iv) State a theorem describing the Kernel and Cokernel of ∂s +As.

(v) Using (iv), compute the Fredholm index of ∂s +As.

4

Let M be a closed manifold.

(i) Define self-indexing Morse function and Morse-Smale metric.

(ii) State the Handle Attaching Theorem.

(iii) Outline the proof of the natural identification

MH∗(self-indexing Morse function) ∼= Hcellular
∗ (M) (over Z/2Z).

[You may state without proof what the cellular differential is in terms of an
intersection number, but please describe the generators of the cellular chain complex]

(iv) Define continuation maps and state their properties at the chain level and at the
homology level.

(v) Deduce from (iv) the Invariance Theorem for Morse homology.

(vi) Deduce from (v) a generalization of (iii) for any Morse function.

(vii) Show that generically a function on a closed orientable surface must have at least
2 + 2g critical points, where g is the genus of the surface.
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(i) Define the meaning of generic subset (Baire subset), and state the Baire category
theorem.

(ii) State the Sard-Smale Theorem.

(iii) State the Implicit Function Theorem for maps between Banach manifolds.

(iv) Deduce from (iii) that if a section F : M → E of a Banach vector bundle is transverse
to 0 [zero section of E] then F−1(0) ⊂ M is a submanifold and TpF

−1(0) = kerDpF .

(v) Suppose that E → M × S is a Banach vector bundle, and F is a smooth section,
and that for all (m, s) with F (m, s) = 0 the following hold:

(1) D(m,s)F : T(m,s)(M × S) → E(m,s) is surjective

(2) DmFs : TmM → E(m,s) is Fredholm of index k [where Fs = F (·, s)]

(3) kerD(m,s)F has a closed complement. [This is a consequence of 1 and 2, but
you need not prove it]

Then prove that F−1
s

(0) is a smooth manifold of dimension k for generic s ∈ S.
[You should prove any transversality result you use]

(vi) Briefly mention the setup in which this result is applied in Morse homology [when
one proves the Transversality Theorem for moduli spaces].
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