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(a) Let k be a finite field. Define the field of Laurent power series K = k((t)). Show
that there is a non-archimedean absolute value | · | on K such that
(i) R = k[[t]] is the completion of k[t],
(ii) K = k((t)) is the completion of k(t),
(iii) #(R/fR) = |f |−1 for all 0 6= f ∈ R.

(b) Let K be a field complete with respect to a discrete valuation. Show that K is
locally compact if and only if it has finite residue field.
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Let K be a finite Galois extension of Qp of degree n.
(a) Show that if non-trivial absolute values | · |1 and | · |2 on K induce the same topology
then there exists c > 0 such that |x|1 = |x|c

2
for all x ∈ K.

(b) Show that if | · | is an absolute value on K extending the p-adic absolute value | · |p on
Qp then

|x| = |NK/Qp
(x)|1/np

for all x ∈ K. [You should prove any results you need about equivalence of norms on vector

spaces.]
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(a) State and prove a version of Hensel’s Lemma.

(b) Determine the number of solutions of x3 − 11x+ 40 = 0 in Zp for p = 2, 3, 5.

(c) Let L ⊃ K be finite extensions of Qp. Show that if L/K is unramified then L/K
is Galois.

4

Let K be a finite extension of Qp with valuation ring OK and residue field k of order
q. Assuming any properties you need of the Teichmüller map, prove that
(a) O∗

K contains a subgroup of finite index isomorphic to (OK ,+).
(b) If e(K/Qp) < p− 1 then K contains exactly q − 1 roots of unity.
(c) Q∗

p/(Q
∗

p)
3∼=Z/3Z or (Z/3Z)2.
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(a) Show that if m ∈ Z with m ≡ 2 (mod 9) then Q3(ζ3, 3
√
m)/Q3 is a totally

ramified extension of degree 6.

(b) Write an essay on higher ramification groups and illustrate by computing them
for the example in part (a).
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