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a) Let (Xt)t>0 be a Lévy process constructed on some probability space (Ω,F ,P).
Prove that, for any t0 > 0, the process (Xt0+t − Xt0)t>0 is a Lévy process independent
under P of σ(Xs ; s 6 t0).

b) State and prove the strong Markov property for Brownian motion. Does your
proof work for any Lévy process (justify your answer)?

c) Let A be a Borel subset of R+, x > 0 and t > 0. Denote by Px (resp. P−x) the
law of a Brownian motion started from x (resp. −x). Prove that

Px(Bs > 0 for all 0 6 s 6 t, and Bt ∈ A) = Px(Bt ∈ A)− P−x(Bt ∈ A).

2

Let (Xn)n>0 be a sub-martingale defined on some filtered probability space
(

Ω,F , (Fn)n>0,P
)

. Recall that a process (An)n>0 is said to be previsible if each An is
integrable and Fn−1-measurable.

a) Prove that (up to modification on a set of null probability) there exists a unique
martingale (Mn)n>0 null at 0 and a unique increasing previsible process (An)n>0 such that
we have almost surely Xn = X0 +Mn +An, for all n > 0.

b) Suppose Xn > 0, for all n > 0. Show that (Xn)n>0 converges almost surely to a
finite limit on the set {A∞ < ∞}.

c) We no longer suppose Xn > 0. Rather, assume there exists a positive constant c
such that |Xn+1 −Xn| 6 c, for all n > 0. Prove the almost-sure inclusion:

{

sup
n>0

Xn < ∞
}

⊂
(

{

(Xn)n>0 converges in R
}

∩ {A∞ < ∞}
)

.
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Given a probability space (Ω,F ,P), write EP for the expectation operator associated
with P. Let Q be a probability on (Ω,F) absolutely continuous with respect to P, with
Radon-Nikodym derivative D ∈ L1(P); its associated expectation operator EQ is given by

EQ[f ] = EP[Df ]

for any bounded or non-negative random variable f : Ω → R. Let (Xn)n>1 be a sequence of
random variables independent and identically distributed under P, with a second moment.
Write m = EP[X1] and σ2 = EP

[

(X1 − m)2
]

. We want to prove that the central limit
theorem also holds under Q:

Sn :=
1

σ
√
n

n
∑

i=1

(Xi −m)
law−→

under Q
N (0, 1). (1)

a) Show by a simple example that two random variables can be independent under
a probability P and non-independent under some probability measure Q absolutely
continuous with respect to P.

b) Introducing the filtration Gk = σ(X1, . . . ,Xk), k > 1, and the random variables
Dk = E[D|Gk], prove that EQ

[

f(Sn)
]

converges to EQ

[

f(N)
]

as n goes to infinity, where
N is under Q a centred normal random variable with unit variance and f : R → R is
continuous and bounded. Conclude the proof of the convergence result (1).

4

Let (Xt)t>0 be a Lévy process starting from 0. Recall Xt− = lim
s↑t

Xs, and set, for

t > 0, ∆Xt = Xt − Xt− . We say that X has bounded jumps if we have almost surely

sup
t>0

|∆Xt| 6 C, for some finite constant C. Also, given any positive constant c, define by

induction the stopping times

T1 = inf{t > 0 ; |Xt| > c} and Tn+1 = inf{t > Tn ; |Xt −XTn
| > c}, for n > 1.

a) Fix any c > 0. Prove that there exists a constant α ∈ [0, 1) such that
E
[

e−Tn

]

= αn, for all n > 1.

b) Suppose X has bounded jumps, with jump bound c. By estimating P
(

|Xt| >
2cn

)

, or by any other method, prove that all the moments of |Xt| are finite.
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Given a Brownian motion (Bs)s>0, write St = sup
06s6t

Bs, for each t > 0. All stopping

times and martingales are considered with respect to the filtration (Fs)s>0 generated by
(Bs)s>0. Fix ε > 0 and define by induction the stopping times T0(ε) = T ′

1(ε) = 0,

Tn(ε) = inf{s > T ′
n(ε) ; Ss −Bs > ε} and

T ′
n+1(ε) = inf{s > Tn(ε) ; Ss −Bs = 0}, for n > 1.

The times Tn(ε) are the successive times at which S −B achieves an upcrossing of [0, ε).
Define

Ut(ε) = sup{k > 0 ; Tk(ε) 6 t},
the number of upcrossing made by S −B before t. Draw a picture of all the situation.

a) (i) Set Ha = inf{s > 0 : Bs = a}. Given two positive constants a and b, prove
that

P
(

ST1(ε) > a+b
∣

∣ST1(ε) > a
)

= P
(

Su−Bu 6 ε for Ha 6 u 6 Ha+b

∣

∣Su−Bu 6 ε for u 6 Ha

)

.

(ii) Prove that ST1(ε) has an exponential law with mean ε.

b) (i) Prove that the random variables ST1(ε), ST2(ε)−ST1(ε), ST3(ε) −ST2(ε), . . . are
independent identically distributed exponential random variables with mean ε.

(ii) For a > 0, set Ha = inf{s > 0 ; Bs = a}. Deduce from (i) that

UHa
(ε) = sup{k > 0 ; STk(ε) 6 a}

has a Poisson distribution with mean a
ε
.
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Let B be a Brownian motion defined on some probability space (Ω,F ,P).

Let tn0 < · · · < tnn be for each n > 1 a finite sequence of points of [0, 1], with tn0 = 0
and tnn = 1. Set hn = max{tni − tni−1 ; i = 1, . . . , n}, and define

[B]n :=

n−1
∑

i=0

(

Btn
i+1

−Btn
i

)2
.

We set Fn = σ
(

[B]n, [B]n+1, . . .
)

, for n > 1. Suppose hn decreases to 0.

a) Prove that the random variables [B]n converge in L2 to the constant 1.

b) Deduce from a) that if
∑

n>1 hn < ∞, then [B]n converges almost surely to 1.

c) Suppose the sequence
{

tn+1
0 , . . . , tn+1

n+1

}

is obtained from the sequence
{

tn0 , . . . , t
n
n

}

by adding a new point, say tn+1
i . Suppose we have proved that

E
[

[B]n
∣

∣Fn+1

]

= [B]n+1, (1)

for all n > 0. Prove that [B]n converges almost surely to the constant 1.

d) Prove (1). You may proceed by the following intermediate steps, which should
be proved.

(i) Show that there exists a Brownian motion B′ and a Bernoulli random variable
ν such that B′ and ν are independent, P(ν = ±1) = 1

2 , and

Bs = B′

min(s,tn+1

i
)
+ ν

(

B′
s −B′

min(s,tn+1

i
)

)

.

(ii) Show that [B′]k = [B]k, for all k > n+1, and compute [B]n− [B]n+1 in terms
of [B′]n − [B′]n+1 and ν.
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