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1

Suppose Θ ⊂ R
p is compact, and assume Q : Θ → R is a continuous function. Let

(Ω,A, P ) be a probability space and suppose Qn(θ) ≡ Qn(θ, ω), Qn : Θ × Ω → R is a
random function on Θ, continuous in θ ∈ Θ for every fixed ω ∈ Ω. Assume that θ0 is the
unique minimizer of Q over Θ. Prove that if

sup
θ∈Θ

|Qn(θ)−Q(θ)| →P 0 (1)

as n→ ∞, then any solution θ̂n of
min
θ∈Θ

Qn(θ)

converges to θ0 in probability as n → ∞. Show by means of a counterexample that the
conclusion may not hold if (1) is replaced by the weaker condition Qn(θ) →P Q(θ) for
every θ ∈ Θ as n→ ∞.

Consider next a statistical model consisting of probability densities {f(θ, ·) : θ ∈ Θ}
with respect to Lebesgue measure, and let Y1, . . . , Yn be independent and identically
distributed random variables from some density f(θ0, ·) on Y ⊂ R, where θ0 ∈ Θ. Define
the log-likelihood function ln(θ) associated with this model, and define the maximum
likelihood estimator θ̂n of θ. Assuming that

∫

Y | log f(θ, y)|f(θ0, y)dy <∞ for every θ ∈ Θ,
that f(θ, y) > 0 for every θ ∈ Θ and every y ∈ Y, and that

f(θ0, ·) = f(θ1, ·) Lebesgue almost everywhere ⇔ θ0 = θ1,

show that
Q(θ) = −Eθ0 ln(θ)

has a unique minimiser θ0 in Θ.

2

Let X1, . . . ,Xn be i.i.d. with arbitrary probability density function f : R → [0,∞),
and denote by E expectation under the joint distribution of X1, . . . ,Xn. Define the kernel
density estimator fn(h, ·) of f based on bandwidth h > 0 and kernel K. Let the kernel
equal K(x) = 1[−1/2,1/2](x), and assuming hn → 0 but nhn → ∞ as n→ ∞, show that

E

∫

R

|fn(hn, x)− f(x)| dx→ 0

as n → ∞. Derive the rate of convergence of this quantity to zero in the case where f
equals the standard normal density function and when hn ∼ 1/ log n.

[You may use results from measure theory, provided they are clearly stated, including
that (2an)

−1
∫ x+an
x−an

f(y)dy → f(x) for any sequence an → 0 and almost every x ∈ R, the

dominated convergence theorem, and that the mapping a 7→
∫

R
|f(x + a) − f(x)|dx is

continuous at zero.]
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Suppose we observe Y1, . . . , Yn independent identically distributed random variables
with probability density f(θ, ·), θ ∈ Θ ⊂ R

p, and consider the testing problem H0 : θ =
θ0 against H1 : θ ∈ Θ \ {θ0}, where θ0 is an interior point of Θ. Define the likelihood
ratio test statistic Λn for this testing problem, and express it in terms of the maximum
likelihood estimator θ̂n. Give a proof of the asymptotic distribution of Λn under the
null-hypothesis H0 (necessary regularity conditions need not be explicitly stated).

Define further the score statistic and the score test. How would you choose critical
values for the rejection regions of the score test?

4

Let X1, . . . ,Xn be independent random variables taking values in [−1, 1] satisfying
EXi = 0 for every i = 1, . . . , n. Prove that for every u > 0 and n ∈ N the inequality

Pr

{

n
∑

i=1

Xi > u

}

6 exp

(

−u
2

2n

)

(1)

holds true.

Without using the central limit theorem, prove that 1√
n

∑n
i=1Xi is stochastically

bounded. [A sequence Wn of random variables is stochastically bounded if for every ǫ > 0
there exists a finite constant M(ǫ) such that P (|Wn| > M(ǫ)) < ǫ. ]

If Z1, . . . , Zn are independent and identically distributed random variables taking
values in [−1

2 ,
1
2 ], construct a conservative level 1−α-confidence interval Cn for the mean

EZ such that the diameter |Cn| of Cn has diameter of order M(α)/
√
n, where M(α)

grows of the order
√
−2 log α as α approaches zero. [A conservative confidence interval is

a random interval Cn such that Pr(EZ ∈ Cn) > 1− α for every n ∈ N.]
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Define the concept of a compactly supported scaling function φ : R → R and the
associated compactly supported wavelet ψ : R → R. Define carefully the concept of the
corresponding wavelet basis of the space L2(R) of square-integrable real-valued functions
defined on R.

Prove that if f : R → R is S times differentiable with bounded S-th derivative on
R, if φ is S-times differentiable, and if

Kj(f) = 2j
∫

R

K(2jx, 2jy)f(y)dy, K(x, y) =
∑

k∈Z
φ(x− k)φ(y − k),

then, for every x ∈ R,
|Kj(f)(x)− f(x)| 6 C2−jS

where C is some constant independent of j. [You may use the fact that
∫

R
K(x, x−u)uαdu

equals 1 if α = 0 and 0 if 0 < α 6 S.]

6

Define the fixed and random design nonparametric regression model. Define the
Nadaraya-Watson estimator.

Define the concept of a cubic spline on [0, 1] with breakpoints 0 < x1 < x2 < · · · <
xn < 1. A cubic spline g is called natural if D2g(0) = D2g(1) = D3g(0) = D3g(1) = 0.
Let Y1, . . . , Yn be independent random variables. Let m be any minimizer of Q(m) =
∑n

i=1(Yi − m(xi))
2 + λJ(m) over the set of twice differentiable functions m defined on

[0, 1], where λ > 0 and J(m) =
∫ 1
0 (D

2m(x))2dx. Discuss briefly the heuristic behind this
penalized nonparametric regression estimator. Show that m can be taken to be a natural
cubic spline . [You may use the fact that for any set of numbers z1, ..., zn we can find a
unique natural cubic spline g such that g(xi) = zi.]

END OF PAPER

Part III, Paper 32


