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Let W be a real Brownian motion and x0 > 0 be a constant, and set

Xt = e−Wt+t/2

(

x0 −
∫ t

0
eWs−s/2ds

)

.

(a) Show that X is the unique strong solution of the SDE

dXt = (Xt − 1)dt−XtdWt, X0 = x0.

You may use without proof any theorem on uniqueness of solutions of SDEs as long as it
is carefully stated.

(b) Assuming

P

(
∫ ∞

0
eWs−s/2ds = x0

)

= 0,

use the Brownian law of large numbers to show P(Xt → ∞ or Xt → −∞) = 1.

(c) Let F be the bounded function

F (x) =

{

e−2/x if x > 0
0 if x 6 0

Show (x− 1)F ′(x) + x2

2 F
′′(x) = 0 for all x, and conclude that F (X) is a local martingale.

Briefly explain why F (X) is a true martingale. [You may use the fact that F is infinitely
differentiable without proof.]

(d) Prove Dufresne’s theorem:

P

(
∫ ∞

0
eWs−s/2ds < x0

)

= e−2/x0 .
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Let X be a weak solution of the SDE

dXt = b(Xt)dt+ σ(Xt)dWt

and let
T = inf{t > 0 : |Xt| > 1}

be the first time X exits the interval [−1, 1]. Finally, let f : [−1, 1] → [0,∞) be a given
function and let V be continuous on [−1, 1] and twice continuously differentiable on (−1, 1)
such that

b(x)V ′(x) +
1

2
σ(x)2V ′′(x) + f(x) = 0 if |x| < 1

and V (x) = 0 if |x| = 1.

(a) Show that Mt = V (Xt∧T ) +
∫ t∧T
0 f(Xs)ds is a local martingale.

(b) Now suppose that for every t > 0,

E[ sup
06s6t

f(Xs)] < ∞.

Show that M is a true martingale.

(c) Suppose T < ∞ a.s. Use the bounded and monotone convergence theorems to conclude
that

V (x) = E

[
∫ T

0
f(Xs)ds|X0 = x

]

(d) Now consider the case where b(x) = b 6= 0 and σ(x) =
√
2 are constants. Show that

E[T |X0 = x] =
1

b

[

−x+
eb + e−b − 2e−bx

eb − e−b

]

.

What is the formula when b = 0? [You may use without proof the fact that T < ∞ a.s.
in this case.]
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Let M be a continuous local martingale with M0 = 0, defined on a filtered
probability space (Ω,F ,P, (Ft)t>0). Let Z be the local martingale defined by

Zt = eMt−[M ]t/2.

(a) Let X be another continuous local martingale, and let

Y = X − [M,X].

Show that the process ZY is yet another local martingale.

(b) Suppose Z is a true martingale. Show that ZY τn is a true martingale for each n,
where τn = inf{t > 0 : |Yt − Y0| > n}.

(c) Fix a non-random time horizon T > 0, and define an equivalent measure Q ∼ P on
(Ω,FT ) by the density

dQ

dP
= ZT

Show that (Yt)t∈[0,T ] is a local martingale under Q.

(d) Now suppose X is a Brownian motion for P. Show that in this case Y is a Brownian
motion for Q. You may use any characterisation of Brownian motion you know, provided
it is clearly stated.
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(a) Let X be a continuous, non-negative local martingale such that X0 = 1 and Xt → 0
a.s. as t → ∞. For each a > 1, let τa = inf{t > 0 : Xt > a}. Show that

P(τa < ∞) = P(sup
t>0

Xt > a) = 1/a.

[Hint: compute the expected value of Xt∧τa = a1{τa6t} +Xt1{τa>t}. ]

Let M be a continuous local martingale with M0 = 0 and [M ]∞ = ∞ a.s.

(b) State the Dambis–Dubins–Schwarz theorem in terms of M . Give a proof of this
theorem under the additional assumption that t → [M ]t(ω) is strictly increasing for each
ω.

(c) Use the Brownian law of large numbers to show that Mt − [M ]t/2 → −∞.

(d) Show that
P(sup

t>0
Mt − [M ]t/2 > y) = e−y

for all y > 0. [Hint: consider the local martingale Xt = eMt−[M ]t/2.]
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Let W be a standard Brownian motion, and let f be a bounded function with a
continuous, bounded derivative f ′. Let φ(x) = 1√

2π
e−x2/2 denote the density of a N(0, 1)

random variable.

(a) Let

U(t, x) =

∫ ∞

−∞
f(x+

√
1− ty)φ(y)dy.

By directly computing conditional expectations and using the independence of the incre-
ments of Brownian motion, show the process (U(t,Wt))t∈[0,1] is a martingale with respect
to the filtration generated by W .

(b) Use Itô’s formula to prove that

f(W1) =

∫ ∞

−∞
f(y)φ(y)dy +

∫ 1

0

∂U

∂x
(t,Wt)dWt.

[Hint: f(W1) = U(1,W1) and
∫∞
−∞ f(y)φ(y)dy = E[f(W1)] = U(0, 0).]

(c) Use Itô’s isometry to establish the identity

∫ ∞

−∞
f(x)2φ(x)dx =

(
∫ ∞

−∞
f(y)φ(y)dy

)2

+

∫ 1

0

∫ ∞

−∞

(
∫ ∞

−∞
f ′(

√
tx+

√
1− ty)φ(y)dy

)2

φ(x)dx dt

[You may use the formula

∂

∂x
U(t, x) =

∫ ∞

−∞
f ′(x+

√
1− ty)φ(y)dy

without proof.]

(d) Apply the Cauchy–Schwarz inequality to establish Poincaré’s inequality:

∫ ∞

−∞
f(x)2φ(x)dx 6

(
∫ ∞

−∞
f(x)φ(s)dx

)2

+

∫ ∞

−∞
f ′(x)2φ(x)dx.

[Hint: if X and Y are independent N(0, 1) random variables, then
√
tX +

√
1− tY ∼

N(0, 1).]
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(a) Fix a non-random time horizon T > 0, and let A be the set of continuous processes
X = (Xt)t∈[0,T ] such that ‖|X‖| < ∞ where

‖|X‖|2 = E[ sup
t∈[0,T ]

X2
t ].

Show that A is complete with respect to ‖| · ‖|, in the sense that if (Xn)n is a sequence in
A such that

‖|Xn −Xm‖| → 0

as m,n → ∞, then there exists a process X ∈ A such that ‖|Xn −X‖| → 0.

(b) Let (Mn)n be a sequence of continuous martingales such that the sequence (Mn
T )n of

random variables is Cauchy in L2(Ω). Use Doob’s maximal inequality to show that there
exists a process X ∈ A such that ‖|Mn −X‖| → 0.

(c) Let S be the set of processes H = (Ht)t∈[0,T ] of the form

H =

N
∑

n=1

1(tn−1 ,tn]hn

where 0 6 t0 < . . . < tN are not random, and for each n the random variable hn is bounded
and Ftn−1

measurable. How is the stochastic integral (H ·M)t =
∫ t
0 HsdMs defined when

M is a continuous martingale in A and the process H is in S? Show that (H · M) is a
continuous martingale and prove Itô’s isometry:

E[(H ·M)2T ] = E

∫ T

0
H2

s d[M ]s.

[You may use the fact that M2 − [M ] is a martingale.]

(d) Let (Hn)n be a Cauchy sequence in S with respect to the norm

‖H‖2 = E

∫ T

0
H2

s d[M ]s.

Show that there exists a process X ∈ A such that ‖|(Hn ·M)−X‖| → 0.
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