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(a) Define, for mixed strategies, the upper value and lower value of a two-person zero-sum
game.

(b) Explain how to find the upper and lower values by solving linear programs.

By quoting from the theory of linear programming, explain why they are equal.

(c) Suppose that b ∈ R
m, c ∈ R

n, A is a m× n real matrix, and all components of A, b,
and c are positive. Consider the two-person zero-sum game in which each player has
m+ n+ 1 pure strategies and the payoff matrix is

M =



















0 A −b

−A⊤ 0 c

b⊤ −c⊤ 0



















.

The first (second) diagonal block is a m×m (n× n) square matrix of zeros.
What are the upper and lower values of this game?

(d) Suppose that (for both players) an optimal mixed strategy in the zero-sum game with
payoff matix M is π⊤ = (p1, . . . , pm, q1, . . . , qn, r). Prove that r 6= 0.

(e) Explain how to find from π an optimal solution to the linear program
LP = {maximize c⊤y : Ay 6 b, y > 0}.
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(a) Suppose X ⊆ R
n, f : Rn → R, h : Rn → R

m and b ∈ R
m. Consider the problem

P : minimize f(x) s.t. h(x) = b, x ∈ X.

Formulate the Lagrangian dual problem, P∗.

Show that the optimal value of P∗ provides a lower bound on the optimal value of P.

(b) Suppose that A is a m× n real matrix and b ∈ R
m. Consider problems:

QP :minimize
x,y

1

2
x⊤x

s.t. x > 0, y > 0

Ax− y = b

QP∗ :maximize
λ, µ, x

b⊤λ− 1

2
x⊤x

s.t. λ > 0, µ > 0,

x = A⊤λ+ µ

Show that QP∗ is the Lagrangian dual problem of QP.

(c) Suppose that x, y, λ, µ are feasible for QP and QP∗ and such that λ⊤y = 0 and
x⊤µ = 0. Show that these variables provide optimal solutions to QP and QP∗.

(d) Find a matrix M (involving A) and vector q (involving b) such that solutions to QP
and QP∗ can be found by solving the linear complementarity problem:

LCP : Find w > 0, z > 0 s.t. w −Mz = q and w⊤z = 0.
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(a) Suppose that A is a n× n real matrix in which all components are non-negative and
q⊤ = (1, . . . , 1) ∈ R

n. Let

S = {(w, z) : w, z ∈ R
n, w > 0, z > 0, w +Az = q}.

Explain how Nash equilibria of the two-person bimatrix game in which the payoff
matrices for the row and column players are A and B = A⊤, respectively, are related
to solutions to the linear complementary problem:

LCP: Find (w, z) ∈ S such that w⊤z = 0.

(b) Starting from the solution at (w, z) = (q, 0), we wish to find a second solution of LCP
by using Lemke’s algorithm to follow a path through a sequence of points in S, each of
which has the property that i = 1 is the only index (amongst {1, 2, . . . , n}) for which
ziwi might be non-zero. Arranging your calculations in a tableau, show that with data

A =







3 3 0

4 0 1

0 4 5







the path terminates with tableau

w1 w2 w3 z1 z2 z3
1/3 −1/4 0 0 1 −1/4 1/12

0 1/4 0 1 0 1/4 1/4

−4/3 1 1 0 0 6 2/3

(c) What happens when the choice i = 1 is replaced with i = 3?

(d) Suppose that for all (w, z) ∈ S the total number of non-zero components in w and z
is at least n. Prove that the number of solutions of LCP is even.

(e) Show that there are solutions to this LCP that cannot be found by following some
Lemke-algorithm path that starts at (w, z) = (q, 0).
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(a) Given a graph G = (V,E) and a partition of vertices into nonempty sets S and
S̄ = V \S, define the cut value C(S, S̄) as the number of edges having one vertex in S
and one vertex in S̄. In the MIN-CUT decision problem we are given a graph G and
integer k and asked if there exists a cut with C(S, S̄) 6 k. By using what you know
about the Ford-Fulkerson algorithm prove that MIN-CUT is in complexity class P.

(b) Let MAX-CUT be the problem of finding OPT(G) := maxS⊂V C(S, S̄). Explain how
to formulate MAX-CUT as a quadratic programming problem in variables confined
to the values 1 and −1.

(c) Consider a Boolean expression, B, that is the conjunction of m clauses, each of which
is the disjunction of 3 literals. For example, with m = 3 clauses, and x̄i = ‘not xi’,

(x3 or x1 or x̄2) and (x̄3 or x̄1 or x̄2) and (x̄3 or x1 or x4).

The NAE-3SAT decision problem asks if it is possible to assign values to the variables
(true or false) so that the Boolean expression is true, and also so that the 3 literals in
each clause are not all equal (i.e. not all true). In the example above, the answer is
yes, by taking x1 = x2 = x̄3 = x̄4 =true.

Let us construct a graph, H(B), in which 3m vertices represent the 3m literals. Place
an edge between any two vertices that represent literals that cannot be equal (such
as xi and x̄i). Suppose this creates K edges. Also place edges between vertices that
represent literals in the same clause (giving another 3m edges). For the example above,
we would have the graph

x1x1

x3 x4

x̄1

x̄2x̄2 x̄3x̄3

Use this construction to show that if NAE-3SAT is NP-complete then MAX-CUT is
NP-hard. Hint: consider the question: is OPT(H(B)) > K + 2m?

(d) Consider the following approximation algorithm for MAX-CUT.

Step 1. Arbitrarily partition the vertices into two nonempty sets S and S̄.

Step 2. Look for a vertex which if moved from its set to the other set will
increase the value of the cut. If no such vertex exists then stop.
Otherwise, move this vertex to the other set, and then repeat Step 2.

Let A(G) denote the value of the cut created by this algorithm.
Show that A(G) > (1/2)OPT(G). Hint: OPT(G) 6 |E|.

Part III, Paper 39 [TURN OVER



6

5

(a) Let G = (V,E) be a graph with vertex set V = {0, . . . , n}. Suppose there is an edge
between every pair of vertices, and each edge e has an associated cost ℓ(e). Given an
edge e, suppose that V can be partitioned into disjoint sets, U and V \U , so that e is
an edge of least cost between them. Prove that there exists a minimum cost spanning
tree that includes e.

(b) Prove that a minimum cost spanning tree can be found by the algorithm which starts
with all edges of G coloured white, and at each of n successive steps recolours one edge
black, choosing this edge as one of least cost amongst those white edges that could be
made black without creating a black cycle.

(c) Suppose that every ℓ(e) is a non-negative integer no greater than k. Let S be a
nonempty subset of N = {1, . . . , n}. As a function of ℓ, let c(S, ℓ) denote the least
cost of subtree of G which has |S| edges and connects all vertices in S to vertex 0.

For each j = 1, . . . k, define ℓj : E → {0, 1} by

ℓj(e) =

{

0 if ℓ(e) < j,

1 if ℓ(e) > j.

Show that c(S, ℓ) = c(S, ℓ1) + · · ·+ c(S, ℓk).

(d) In the minimum cost spanning tree game the set of players is N = {1, . . . , n} and the
characteristic function is defined as v(S) = c(S, ℓ), S ⊆ N . It is desired to specify a
cost sharing, {xS,i, i ∈ S}, for each subset S, having the desirable properties that

∑

i∈S

xS,i = v(S) for all S ⊆ N, S 6= ∅ , (1)

xS,i > xT,i for all i ∈ S ⊂ T ⊆ N. (2)

Explain why these properties are desirable.

Show that if such numbers exist then (xN,1, . . . , xN,n) is in the core of the game.

(e) Consider a simple case of the above, in which ℓ(e) ∈ {0, 1} for all e. Let S ⊆ N . For
each i ∈ S, set xS,i = 0 if, for some j ∈ S∪{0} and j < i, vertex i can be connected to
j by a path of cost 0 passing through only vertices in S ∪{0}. Otherwise set xS,i = 1.
Prove that with this definition (1) and (2) hold.

How could you solve (1)–(2) in a case that ℓ(e) ∈ {0, . . . , k} for all e ∈ E?
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(a) A item is to be auctioned between two identical risk-neutral bidders, who have private
valuations for winning the item that are independently distributed uniformly on [0, 1].
The auction design specifies that the item is won by the highest bidder, and, as
functions of their bids, the bidders shall make certain non-negative payments to the
auctioneer. All the above (apart from the private valuations) is public knowledge.

Suppose that in equilibrium the optimal strategy of bidder i, when having private
valuation vi, is to participate in the auction and bid b(vi) if vi > v̄i, but to not
participate if vi < v̄i, where v̄i is some number in [0, 1]. Conditional on vi, let π(vi)
and e(vi) denote, respectively, bidder i’s expected profit and expected payment.

Explain why π(vi) = v2i − e(vi) for vi > v̄i, and π(0) = 0 for vi < v̄i. Show that

π(vi) = (1/2)(v2i − v̄2i ), vi > v̄i.

(b) Consider three auctions designs in which: (i) the winner pays his bid, (ii) the loser
pays his bid, (iii) both winner and loser pay their bids. Why in these designs is v̄i = 0?

Find b(vi) in each case. Verify that in (ii) b(vi) → ∞ as vi → 1.

Verify that (i) and (iii) guarantee the same expected revenue for the auctioneer.

(c) Show that if we add to auction (iii) the rule that the minimum permitted bid is 1/4
then v̄1 = v̄2 = 1/2.

Show that the expected revenue obtained by the auctioneer in this auction exceeds
that in any of (i), (ii) and (iii).

END OF PAPER
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