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In the following L0 denotes the Lagrangian of free,
massive scalar field theory,

L0 = −
1

2
∂µφ∂µφ −

1

2
m2φ2

where xµyµ = xµyµ = ηµνxµyν with metric convention η =
diag(−1, +1, . . . , +1).
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(a) A simple harmonic oscillator of angular frequency ω

is described by the Hamiltonian

Ĥ =
p̂2

2
+

1

2
ω2q̂2

where p̂ and q̂ are momentum and position operators for a
particle moving in one dimension which obey the canonical
commutation relations [p̂, q̂] = −i~.

Consider the two-point function

H (2)(t1, t2) = 〈0 |T {q̂(t1) q̂(t2)}| 0〉

where |0〉 is the groundstate of the system, q̂(t) is the position
operator in the Heisenberg picture and T denotes time-ordering.
You may assume that H (2) is given by the path integral formula

H (2)(t1, t2) =

∫

[dq(t)] q(t1) q(t2) exp





i

~
S[q]





∫

[dq(t)] exp





i

~
S[q]





,

where S[q] is the corresponding classical action of a path q(t)
in the time interval −∞ < t < +∞.

By defining a suitable generating functional, evaluate
H (2)(t1, t2), giving the answer in the form of an integral over
the energy of the particle, choosing the contour so that the path
integral formula above is convergent. Thus show that

H (2)(t1, t2) = −
~

2ω
exp (−iω (t1 − t2)) t1 > t2

= +
~

2ω
exp (+iω (t1 − t2)) t1 < t2 .
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[10 marks]

(b) The effective action Γ[ϕ] is defined in terms of the
generating functional W [J ] for connected diagrams as

Γ[ϕ] =
∫

ddx ϕ(x) J(x) − W [J ] .

Show that

∫

ddy
δ2Γ[ϕ]

δϕ(x)δϕ(y)

δ2W [J ]

δJ(y)δJ(z)
= δ(d)(x − z) .

Consider the quantity

Γ3(x1, x2, x3) = −i
δ3Γ[ϕ]

δϕ(x1)δϕ(x2)δϕ(x3)

∣

∣

∣

∣

∣

∣

∣

ϕ≡0

By deriving an equation relating Γ3 to two- and three-point con-
nected Green’s functions, and illustrating the equation graphi-
cally, explain why it gets contributions only from one-particle

irreducible diagrams with three (amputated) external legs. [10
marks]
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A scalar field theory in d spacetime dimensions has
Lagrangian

L = L0 −
λ2n

(2n)!
φ2n

where n is a positive integer. Write down (without derivation)
a set of Feynman rules for calculating the k-point Euclidean
momentum space Green’s function Fk(p1, . . . , pk) . [4 marks]

The amputated k-point function F̂k is defined by the
equation

Fk (p1, p2, . . . , pk) =

i (2π)d δ(d)
(

∑k
j=1 pj

)

×
∏k

j=1

(

i
p2

j+m2

)

× F̂k (p1, p2, . . . , pk) .

(a) For φ4 theory (i.e., n = 2) in d = 4, evaluate the one-
loop contribution to F̂4(p1, p2, p3, p4) with a momentum space
cut-off Λ giving the answer as an integral over an undetermined
loop momentum. (You can ignore any one-particle reducible
and/or disconnected contributions). Find the divergent part of
the resulting expression. [6 marks]
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(b) For an arbitrary positive integer n, draw the con-
nected Feynman diagram which contributes to the two-point
function F̂2(p1, p2) at linear order in λ2n and evaluate it in
Dimensional Regularization. Find the leading divergence in
four-dimensions as a pole in ǫ = 4 − d. [10 marks]

[In this question you may use the following formula for
the volume of a unit d − 1 sphere:

Vol
(

Sd−1
)

=
2πd

2

Γ
(

d
2

)

where the Euler Gamma-function is defined as

Γ(α) =
∫ ∞

0
dx xα−1 e−x

for Re[α] > 0 and obeys Γ(α + 1) = αΓ(α) for all complex
values of α.]
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(a) Define the superficial degree of divergence, D, of a
Feynman graph in a scalar field theory in d spacetime dimen-
sions. Which of the following two statements is true?

(i) If D < 0 then the diagram is finite.

(ii) If D > 0 then the diagram is divergent.

Justify your answer by analysing the divergences of a generic
Feynman diagram.

Consider a Feynman diagram with L loops, E external
legs and Vn vertices of valence n in a scalar field theory in d
spacetime dimensions. Derive a formula for D in terms of L,
E, Vn, n and d only. [8 marks]

(b) In the following you may assume any part of the
Renormalisation Theorem provided it is clearly stated. Con-
sider a theory in d spacetime dimensions with Lagrangian

L = L0 − V (φ) .

In the following cases identify the relevant primitively divergent
Feynman diagrams and state the counterterm(s) required to
remove the divergence. [N.B. You are not required to find

the coefficient of the counterterm only its general form.]

(i) V (φ) = λ6φ
6/6! in d = 4. Include diagrams of order λ6

only.

(ii) V (φ) = λ4φ
4/4! in d = 6. Include one-loop diagrams only.

[8 marks]
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(c) The β-function of SU (N ) Yang–Mills theory is given
as

β(g) = µ
dg(µ)

dµ
= −

11

3
N

g3

(4π)2
.

Determine the running coupling g(µ) in terms of its value g(µ0)
at some reference scale µ = µ0.

Define a dynamical scale ΛY M such that g(µ) = 1 for
µ = ΛY M and show that it is independent of µ0. [4 marks]

4

Write an essay on non-Abelian gauge theory. Your
account should include a discussion of the classical Yang–
Mills Lagrangian and its gauge invariance. You should give
the gauge-fixed Lagrangian for gauge group SU (N ) in the
family of covariant linear gauges ∂µAµ = f(x), where f is an
undetermined Lie algebra valued function, carefully discussing
the origin of each term in the Lagrangian. Finally you should
discuss the schematic form of the resulting Feynman rules. [20
marks]

END OF PAPER
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