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The following standard gate notation is used in this paper. Note that I denotes the
identity transformation throughout.

H H =
1√
2

(

|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0| − |1〉 〈1|
)

X X = |0〉 〈1|+ |1〉 〈0|

Z Z = |0〉 〈0| − |1〉 〈1|

•
�������� CX = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X

•
•

CZ = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Z

NM
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This question is about a quantum oracle problem and its query complexity.

If a = a1 . . . an and x = x1 . . . xn are n-bit strings, the Hamming distance h(a,x) is defined
to be the number of positions at which the bit strings a and x differ (so 0 6 h(a,x) 6 n).

Let Bn denote the set of all n-bit strings, and let Z4 = {0, 1, 2, 3} denote the set of integers
mod 4. For each a ∈ Bn introduce the function Ha : Bn → Z4 defined by

Ha(x) = h(a,x) mod 4.

Also let M denote the 1-qubit gate defined in the computational basis by

M |a〉 = 1√
2

∑

x∈B1

ih(a,x) |x〉 for a ∈ B1 (where i =
√
−1).

(a) Calculate M |0〉 and M |1〉. Hence (or otherwise) show that M is unitary.

(b) Show that for each a ∈ Bn

M ⊗ . . .⊗M |a〉 = 1√
2n

∑

x∈Bn

iHa(x) |x〉 .

Next, introduce the shift operation S defined by S |y〉 = |y + 1 mod 4〉 for y ∈ Z4, and
introduce the state |α〉 = 1

2(|0〉 − i |1〉 − |2〉+ i |3〉).

(c) Show that |α〉 is an eigenstate of S and determine its eigenvalue.

Now consider the following oracle promise problem HAM:
Input: an oracle for a function f : Bn → Z4;
Promise: f is Ha for some n-bit string a;
Problem: determine the n-bit string a with certainty.

For quantum computing, the oracle is given as the unitary operation Uf defined by

Uf |x〉 |y〉 = |x〉 |y + f(x) mod 4〉 for x ∈ Bn and y ∈ Z4.

(d) Using the results of (b) and (c) above (or otherwise) show how HAM may be solved
with only a single query to the oracle (together with further operations that do not
depend on the oracle).
Draw a circuit diagram for your quantum algorithm.
(Hint: note that Uf |x〉 |y〉 = |x〉Sf(x) |y〉).
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This question is about the quantum Fourier transform and periodicity determina-
tion.

In this question you may assume the following statements (S1) and (S2) about QFT , the
quantum Fourier transform mod N :
(S1): if N = Ar where A and r are integers and 0 6 x0 < r then

QFT
1√
A

A−1
∑

k=0

|x0 + kr〉 = 1√
r

r−1
∑

l=0

ωx0lA |lA〉 where ω = e2πi/N .

(S2): QFT may be implemented in poly(logN) time.

(a) Let ZN denote the integers mod N . Let f : ZN → ZN be a periodic function with
period r and with the property that f is one-to-one within each period. Suppose
we are given one instance of the quantum state

|f〉 = 1√
N

N−1
∑

x=0

|x〉 |f(x)〉 .

Using (S1) and (S2), describe an efficient procedure that may be used to determine
the period r with probability O(1/ log logN). (You may also assume that the
number of integers less than K that are coprime to K is O(K/ log logK)).

(b) Consider the function f : Z12 → Z10 defined by f(x) = 3x mod 10.

(i) Suppose we are given the state |f〉 = 1√
12

∑11
x=0 |x〉 |f(x)〉 and we measure

the second register. What are the possible measurement values y and their
probabilities?

(ii) Suppose the measurement result was y = 3. Find the resulting state |φ〉 of
the first register after the measurement.

(iii) Suppose we measure the state QFT |φ〉 (with |φ〉 from (ii)). What is the
probability of each outcome 0 6 c 6 11?
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This question is about measurement-based quantum computation.

Given a graph, the corresponding graph state is obtained by preparing a qubit in the state
|+〉 = 1√

2
(|0〉+ |1〉) for every node in the graph, then applying a CZ gate between every

pair of qubits linked by an edge.

Consider the graph state |ψ2×2〉 corresponding to the graph

(a) Show that if one of the qubits is measured in the computational basis with result r,
the remaining qubits will be left in the state (Zr ⊗ I ⊗ Zr) |ψ3〉, where |ψ3〉 is the
graph state corresponding to the graph

(b) Next, the first qubit of the state (Zr ⊗ I ⊗ Zr) |ψ3〉 is measured in the basis
{|v0(θ)〉 , |v1(θ)〉}, where |vs(θ)〉 = 1√

2

(

|0〉+ (−1)seiθ |1〉
)

, and result s is obtained.

Show that the remaining qubits are left in the state

CZ

(

X(r+s)U (θ)⊗ Zr
)

|+〉 |+〉 ,

where U(θ) = |0〉 〈v0(θ)|+ |1〉 〈v1(θ)|.

(c) Using your previous answers, explain how you could simulate the results of the
circuit

|+〉 U(θ) •
NM






 → k1

|+〉 •
NM






 → k2

using single-qubit measurements on |ψ2×2〉 and classical processing of the results.

(d) Suppose that you prepare a qubit in the state |0〉 for every node in a graph, and
apply the same two-qubit gate V along every edge.

Find a V , and appropriate single-qubit measurements, which would allow you to
perform universal quantum computation using such states.
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This question is about error correction and fault-tolerance.

Suppose you are trying to build a quantum circuit, but the components you are using are
prone to errors. Specifically, you know that in the circuit:

• Every single qubit gate or preparation of a qubit in the |0〉 state has probability ǫ
of being followed by an X-error.

• Every CX gate has probability ǫ of being followed by an X-error on the target qubit
only. The control qubit is unaffected by errors.

• Every measurement of a qubit in the computational basis has probability ǫ of having
its outcome bit flipped.

To protect against these errors you encode the logical state of a qubit using the bit-flip
code |0〉 → |0〉 |0〉 |0〉 , |1〉 → |1〉 |1〉 |1〉. In particular, to generate the encoded version of a
|0〉 state, you prepare three qubits in the state |0〉.

(a) Given the error model above, describe a fault-tolerant procedure for each of the
following tasks:

(i) Performing an X gate on an encoded qubit.

(ii) Performing a computational basis measurement on an encoded qubit.

(iii) Performing error-correction on an encoded qubit, which will recover the
original state if it has suffered at most one X error.

(b) The circuit below will perform a Hadamard gate on an encoded qubit. Explain why
it is not fault-tolerant.

encoded H

• • H • •
= �������� ��������

�������� ��������

(c) In order to simulate the simple circuit

|0〉 X
NM








using the procedures defined above, we replace each component by its encoded
version followed by error correction (except that we do not perform error correction
after the final measurement).

Show that the error probability for this encoded circuit will be less than that for
the original circuit if ǫ is below some threshold.
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