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(a) Let V be a finite–dimensional real inner product space with orthonormal basis (ei)
and W a finite–dimensional complex inner product space. Let c : V → End(W ) be a
real linear map such that c(v)∗ = c(v) and c(a)c(b) + c(b)c(a) = 2(a, b)I. If T ∈ End(V )
satisfies T ∗ = −T and π(T ) = 1

4

∑
c(Tei)c(ei) in EndW , prove that π(T )∗ = −π(T ) and

[π(T ), c(v)] = c(Tv) for all v ∈ V .

(b) Prove that if V is a real inner product space of even dimension then any T ∈ O(V )
defines an automorphism of the Clifford algebra of V and that this automorphism is inner,
i.e. can be implemented by a unitary in the Clifford algebra.

(c) Prove that the system of bosonic operators an, d with [am, an] = δm+n,0I, [d, am] =
−mam, a∗m = a−m and d = d∗ has a unique irreducible positive energy representation
generated by a lowest energy vector v with a0v = µv and dv = 0.

(d) Prove that the operators L0 = 1

2
a20 +

∑
n>0

a−nan and Ln = 1

2

∑
r+s=n aras (n 6= 0)

satisfy [Ln, am] = −mam+n and give a representation of the Virasoro algebra with central
charge c = 1.

2

(a) State and prove the double commutant theorem for *–algebras acting on a finite–
dimensional complex inner product space.

(b) Let G be a closed subgroup of GL(V ) with V a finite–dimensional real vector space.
Let g = {X ∈ End(V ) : exp(tX) ∈ G for all t ∈ R}. Prove that g is a real Lie algebra and
that the exponential map defines a homeomorphism between a neighbourhood of 0 in g

and I in G.

(c) Let E, F , H be operators on a finite–dimensional complex inner product space V
satisfying [E,F ] = H, [H,E] = 2E, [H,F ] = −2F , H = H∗ and E∗ = F . Prove that V
breaks up as a direct sum of irreducible submodules classified by their dimension 2j + 1,
with j a non–negative half–integer.

(d) Describe without proof how to construct a Lie algebra from an even integral lattice in
Euclidean space generated by elements with ‖α‖2 = 2. State and prove a condition for
the Lie algebra to be simple.

3

Either write an essay on how Schur–Weyl duality can be used to prove the Weyl character
formula for U(n); or write an essay on how the Dirac operator can be used to prove the
Weyl character formula for U(n).
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(a) Explain how to construct bosonic operators using complex fermions. By introducing
a shift operator on fermionic Fock space, write down a formula that expresses complex
fermions in terms of bosons.

(b) Explain how to construct the affine Kac–Moody algebra ŝl2 at level 1 using complex
fermions.

(c) Prove that the lowest energy space of a positive energy irreducible representation of
level ℓ > 1 must be an irreducible sl2 representation of dimension 2j+1 with 0 6 j 6 ℓ/2.

(d) Assuming any results concerning the boson–fermion correspondence that you might
require, prove that the level one representations corresponding to j = 0 and 1

2
have char-

acter ϕ(q)−1Θ2j,1(q, z), where ϕ(q) =
∏

n>0
(1− qn) and Θn,m(q, z) =

∑
k∈ n

2m
+Z

z2mkqmk2 .

Explain briefly how these give rise to representations of the Virasoro algebra with central
charge c = 1.

5

(a) Explain what it means for two fields A(z), B(w) to be strongly local and what is
meant by their operator product expansion. What is meant by a vertex algebra? Let
the operators en be complex fermions satisfying {em, en} = 0 and {em, e

∗

n} = δm,nI.
Assuming any general properties of strongly local fields that you require, explain how the
fields ψ(z) =

∑
enz

−n−1 and φ(z) =
∑
e∗nz

n generate a vertex algebra on fermionic Fock
space.

(b) Let L(z) =
∑
Lnz

−n−2 be the Virasoro field in a conformal vertex algebra with central
charge c. Prove that

L(z)L(w) ∼
c/2

(z − w)4
+

2L(w)

(z − w)2
+
dL/dw

z − w
.

(c) If E(z) =
∑
E(n)z−n−1, F (z) =

∑
F (n)z−n−1 and H(z) =

∑
H(n)z−n−1 are the

fields corresponding to a representation of ŝl2 at level ℓ, show that the vertex algebra they
generate has Virasoro field given by the Segal–Sugawara formula

Lg(z) =
1

2(ℓ+ 2)
(
1

2
: H(z)2 : + : E(z)F (z) : + : F (z)E(z) :).

[You may assume any general properties of vertex algebras that you require.]

(d) Indicate briefly how the representations in (c) can be used to construct unitary
representations of the Virasoro algebra with central charge c = 1− 6/m(m+ 1) (m > 3).
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Write an essay on the irreducible positive energy representations and the Kac character
formula for the affine Kac–Moody algebra ŝl2.

END OF PAPER
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