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SECTION I

(i) Write down the equation satisfied by an arbitrarily
parametrized geodesic in a general spacetime, and state the
condition for the parameter to be affine. What does it mean for
a spacetime to be “geodesically complete”?

(ii) The Rindler metric for a 2-dimensional flat spacetime
is

ds2 = − (κx)2 dt2 + dx2 , x > 0 ,

for constant κ > 0. By defining the new coordinates

T = x sinh(κt) , X = x cosh(κt)

show that Rindler spacetime is a region of two-dimensional
Minkowski spacetime. Show also that an observer at fixed x
in the Rindler spacetime has proper acceleration of magnitude
a = 1/x.

The Unruh effect states that an observer undergoing
constant proper acceleration a in a two-dimensional Minkowski
spacetime appears to be in a heat-bath at temperature T =
~a/(2π). State the Tolman law for thermal equilibrium in
a static spacetime and verify that this law is satisfied by the
temperature of static observers in Rindler spacetime.

Explain briefly the relevance of your result to the Schwarz-
schild black hole.

Part III, Paper 55



3

(iii) The Kerr metric in Boyer–Linquist coordinates is

ds2 = −Σ−1
(

∆ − a2 sin2 θ
)

dt2

−2aΣ−1
(

r2 + a2 − ∆
)

sin2 θ dtdφ + Σ ∆−1dr2

+Σ dθ2 + Σ−1

[

(

r2 + a2
)

2 − ∆ a2 sin2 θ
]

sin2 θdφ2 ,

where

∆ = r2 − 2Mr + a2 , Σ = r2 + a2 cos2 θ .

What is the significance of the parameter a? Where is the
event horizon? Where is the ergoregion? Explain briefly how
the existence of an ergoregion allows energy to be extracted
from a black hole (Penrose process).

(iv) Raychaudhuri’s equation for a null geodesic congru-
ence is

dθ

dλ
= −1

2
θ2 − σ̂µνσ̂µν + ω̂µνω̂µν − Rµνtµtν ,

where λ is an affine parameter. Explain briefly the significance
of (a) the vector t, (b) the scalar θ, (c) the symmetric tensor σ̂

and (d) the antisymmetric tensor ω̂.

(v) A Kerr black hole of mass M and angular momentum
J has “horizon area”

A = 8π
[

M 2 +
√

M 4 − J2

]

.

A collision of two Kerr black holes, of the same mass and
angular momentum, produces a Schwarzschild black hole and
gravitational radiation. What is the maximum fraction of the
initial mass (2M ) that can be radiated away without violating
the second law of black hole mechanics?
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(vi) A quantum field Φ(x) takes the form

Φ(x) =
∑

i

[

aiui(x) + a
†
iu

∗
i (x)

]

(∗)

in the far past, where the spacetime is Minkowski and the
functions ui(x) are the positive-frequency eigenstates of the
standard Minkowski time-translation Killing vector field. The
operator coefficients (ai, a

†
i ) satisfy the commutation relations

[ai, aj] = 0 ,
[

ai, a
†
j

]

= δij .

In the far future, where the spacetime is again Minkowski, the
quantum field again takes the form (∗) but with the operators
ai replaced by

a′
i =

∑

j

(

ajAji + a
†
jB

∗
ji

)

,

and hence a
†
i by (a′

i)
†. Find the restrictions on the matrices

A and B that follow from the requirement that the primed
operators obey the same commutation relations as the unprimed
operators. Show that if the initial state is a vacuum state then
the final state will be one with particles unless B = 0.
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SECTION II

1

(a) A point particle of mass m has position xµ(λ) and
4-momentum pµ(λ) in a spacetime with metric gµν (µ, ν =
0, 1, 2, 3), where λ is an arbitrary parameter on the particle’s
worldline. Starting from the action

I [x, p, e] =
∫

dλ







dxµ

dλ
pµ −

1

2
e

(

gµνpµpν + m2
)







,

where e is a Lagrange multiplier and gµν the inverse metric,
obtain the particle’s equations of motion. Explain briefly why
the particle moves on a geodesic. Use the equations of motion
to show that the quantity Qξ = ξµpµ is a constant of the motion
if the vector field ξ = ξµ∂µ is a Killing vector field.

(b) Consider the metric

ds2 = −F (r)dt2 + 2
√

1 − F (r) drdt + dr2

+r2
(

dθ2 + sin2 θdφ2
)

(1)

where F (r) → 1 as r → ∞. Why are the vector fields k = ∂/∂t
and m = ∂/∂φ Killing? Using the conservation on geodesics
of Qk = −ǫ and Qm = h, and assuming θ = π/2, show that
ṙ2+Veff(r) = ǫ2, where Veff is a function of r that you should find
(and ṙ is the derivative of r with respect to an affine parameter).
Why is no generality lost by the assumption that θ = π/2?
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(c) Show that a hypersurface r = µ, for constant µ is a
null hypersurface of the metric (1) when F (µ) = 0. Show also
that if F < 0 for µ < r then there is no causal future-directed
worldline on which a particle passing through this hypersurface
could return to r < µ.

State the definition of a Killing horizon, and of its surface
gravity κ. Show that a null hypersurface r = µ of the metric
(1) is a Killing horizon, and compute its surface gravity.

(d) By introducing a new time coordinate T = t + p(r)
for some function p, show that the metric (1) is equivalent to a
static metric. Find the singularities of both this static metric
and the metric (1) for the case

F = (1 − µ/r)2 .

Use your result to explain how the static metric may be analyt-
ically continued from r > µ to r < µ/2.
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2

Write an essay to explain how Carter–Penrose (CP)
diagrams encode the causal structure of spherically-symmetric
asymptotically-flat spacetimes. You need not present any
calculations but you should explain the principles involved.

You should start with a brief explanation of conformal
compactification, illustrated by Minkowski spacetime, using
this to explain what is meant by “asymptotically flat”. You
should sketch the CP diagrams for the Schwarzschild spacetime
(negative and positive mass, exterior to collapsing star, and
the time symmetric maximal analytic extension) using them to
illustrate the concepts of a “naked singularity”, “event horizon’
and “Einstein–Rosen bridge”.

You should then sketch CP diagrams for the Reissner–
Nordstrom black holes (collapsing charged star, maximal ana-
lytic extension, extreme case) using them to illustrate the con-
cept of a Cauchy horizon, and to explain why Cauchy horizons
are typically unstable to arbitrarily small perturbations.
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3

(a) State the dominant energy condition on the stress
tensor Tµν appearing in the Einstein equations Gµν = 8πGTµν .
State the zeroth law of black hole mechanics.

Given that Rµνξµξν = 0 on a Killing horizon N of a
Killing vector field ξ, use the dominant energy condition and
Einstein’s equations to deduce that

j[µξν]

∣

∣

∣

∣N = 0 , jµ = −Tµνξν .

Given also that ξ[µRν]
λξλ = −2ξ[µ∂ν]κ, where κ is the surface

gravity of N , deduce the zeroth law. [You may assume that the
future event horizon of an asymptotically-flat stationary black
hole spacetime is a Killing horizon.]

(b) The Komar integral

Qξ(V ) =
c

16πG

∮

∂V
dSµνDµξν

gives (for some constant c) the “charge” in volume V ⊂ Σ (a
spacelike hypersurface) associated with a Killing vector field ξ.
Using the fact that DρDµξν = Rν

µρσξσ, show that

Qξ(V ) =
∫

V
dSµJ

µ
ξ ,

for a 4-vector current J
µ
ξ , which you should find, constructed

from ξ and the stress tensor Tµν . Show further that

DµJ
µ
ξ = 0 .
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(c) For an asymptotically-flat spacetime with time-trans-
lation and rotation Killing vectors k and m, respectively, the
Komar integrals for total mass and angular momentum are

M = − 1

8πG

∮
∞ dSµνDµkν , J =

1

16πG

∮
∞ dSµνDµmν .

Use these integrals to obtain expressions for the mass and angu-
lar momentum of a stationary, axi-symmetric, asymptotically-
flat, black hole solution of the vacuum Einstein equations as
integrals over a section of its event horizon. Using the zeroth
law of black hole mechanics, and assuming constant angular
velocity ΩH of the horizon, derive the Smarr formula

M =
κA

4π
+ 2ΩHJ ,

in units for which G = 1, where κ is the surface gravity and A

is the “horizon area”. Use this formula to obtain a version of
the “first law of black hole mechanics”.

END OF PAPER
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