
MATHEMATICAL TRIPOS Part III

Wednesday, 8 June, 2011 1:30 pm to 4:30 pm

PAPER 58

STRUCTURE AND EVOLUTION OF STARS

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

You may use the equations and results given below without proof.

The symbols used in these equations have the meanings that were given in lectures.

Candidates are reminded of the equations of stellar structure in the form:

dm

dr
= 4πr2ρ ,

dP

dr
= − Gmρ

r2
,

dLr

dr
= 4πr2ρǫ .

In a radiative region
dT

dr
= − 3κρLr

16πacr2T 3
.

In a convective region
dT

dr
=

(Γ2 − 1)T

Γ2P

dP

dr
.

The luminosity, radius and effective temperature are related by L = 4πR2σT 4
e .

The equation of state for an ideal gas and radiation is P =
RρT

µ
+

aT 4

3
,

with 1/µ = 2X + 3Y/4 + Z/2 .
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Consider a cluster of chemically homogeneous massive stars. The stellar material

behaves as a fully ionized ideal gas with mean molecular weight µ and radiation pressure is

negligible. The energy generation, opacity and whether the stellar interiors are convective

or radiative depends on a star’s mass. For the most massive stars energy generation is by

the CNO cycle and opacity dominated by electron-scattering, such that ǫ = ǫ0XρT 13 and

κ = κ0(1 +X). Here κ0 and ǫ0 are constants. Use homology to show that, for such stars,

L ∝ Xµ13M
15

R16
.

At low masses they can be assumed to be fully radiative. However as the mass of

a star increases convection becomes more important so that at higher masses they can

be assumed to be fully convective except for a thin radiative atmosphere. Show that for

radiative stars

L ∝ µ4

(1 +X)
M3

and for convective stars

L ∝ µ4

(1 +X)
8

5

M
12

5 R
6

5 .

For zero metallicity stars with X = 1 determine the gradient that each zero-age

main sequence has in the theoretical Hertzsprung-Russell diagram and sketch this diagram

showing the two main-sequences and their transition.

Use your results to estimate how the radiative stars evolve from the zero-age main

sequence. Assume they are fully mixed as hydrogen burns to helium and find the gradients
d logL
dX and d log Te

dX . Sketch an example track on your HR diagram. Comment on your

evolution tracks.
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Estimate the mean kinetic energy < E > for a proton in the centre of the Sun and

compare it with the Coulomb energy EC owing to the electrostatic repulsion that must be

overcome in bringing two protons together.

State briefly the two physical ideas that allow this barrier to be surmounted.

Show that in a collision between two protons, each of mass mp, the kinetic energy

E in the centre of mass frame is related to their relative velocity v by E = 1
4
mpv

2.

The cross-section for nuclear reactions between two protons can be written in the

form

σ(E) =
S0

E
exp

(

− 2

√

EB

E

)

,

explain briefly the physical meaning of S0 and EB.

For non-degenerate, non-relativistic gas at temperature T the relative velocity

distribution is Maxwellian given by

n(v)dv = 4π(
mp

4πkT
)
3

2 exp
(

− E

kT

)

v2dv.

The number density of reacting particles is N. Show that the reaction rate Rpp per unit

volume per unit time is

Rpp =
1

2
N2

∫

∞

0

vσ(v)n(v)dv.

Deduce that

Rpp =
S0N

2

(kT )3/2

( 4

πmp

)
1

2

∫

∞

0

exp
(

− E

kT
− 2

√

EB

E

)

dE.

Find the Gamow energy EG at which the integrand peaks.

Approximate the integrand by a Gaussian centred on EG and deduce that the

temperature dependence of the reaction rates take approximately the form

Rpp ∝ 1

Tα
exp (− (β/T )

1

3 ),

where α and β are constants which you should determine. Taking logarithms and

differentiating approximate the reaction rate in the form of Rpp ∝ T ν . Esimate ν for the

centre of the Sun to one significant figure.

[The temperature at the centre of the Sun Tc = 2 × 107K, Boltzman’sconstant

k = 1.4 × 10−16ergK−1, the electrostatic force between two protons is e2/r2 where

e2 = 2.3×10−19erg cm, with EB = 2×10−7erg and the radius of a proton, rp = 10−13cm.]
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Derive Schwarzschild’s condition for stability to convection of a stellar radiative

region consisting of an ideal gas with ratio of specific heats γ = 5/3 in the form

P

T

dT

dP
<

2

5
.

The temperature in the atmosphere of a cool star is given as a function of the optical

depth τ by

T 4 = T 4
e

(1

2
+

3

4
τ
)

,

and the opacity is given by κ = κ0ρT
β+1 where κ0 and β are constants. Show that

in a thin radiative layer at the surface

P 2 =
1

4− β

32gR
3κ0µT

β
e

(

(1

2
+

3

4
τ
)

4−β

4 −
(1

2

)
4−β

4

)

,

where g is the acceleration due to gravity at the stellar surface. Deduce that convection

sets in when

τ =
2

3

(

(
5

1 + β
)

4

4−β − 1
)

.

In the convective region just below the radius of onset the structure remains

polytropic with P = KT 5/2. Show that when β = 9,

K2 =
32
√
2gR

15κ0µT 14
e

.

In the deeper convective layers the opacity is given by κ = κ1ρT
−3 where κ1 is a

constant. These layers have negligible mass, no energy generation and there is a transition

to an inner radiative zone. Show that this occurs where

T 3 =
√
2
κ1
κ0

T−10
e .

[You may assume that the same polytropic relation applied throught the convection zone.]
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Write brief notes on four of the following topics:

(i) The late time lightcurves of supernovae and their relation to radioactive decay.

(ii) Polytropes and their use to model white dwarfs.

(iii) The evolution of a 5M⊙ star up to second dredge-up.

(iv) The evolution of Wolf-Rayet stars.

(v) Sources of opacity over the range 105 to 108K.

END OF PAPER
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