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1

Fluid fills a vertical tube of radius r. The fluid is unstably stratified in density and

has density gradient
∂ρ

∂z
> 0, with z pointing upward. Use mixing-length theory to show

that the equation governing the evolution of density is

∂ρ

∂t
= Γ

∂

∂z

[

(

∂ρ

∂z

)3/2
]

,

where Γ is to be found.

If the tube initially contains fluid of density ρ+∆ρ for 0 < z < d and fluid of density
ρ for −d < z < 0, find an analytic solution for the variation of density with time, up to a
specific time to be found when the density of the fluid at the top and bottom of the tube
begins to change.

[You may assume the flows are of high Reynolds number.]

2

Fluid of density ρ + ∆ρ migrates along a slope of angle θ through a deep porous
medium of porosity φ, and permeability K, which is initially filled with fluid of density ρ.
The fluid of density ρ + ∆ρ is supplied from a point source with flux Q. Show that the
steady current may be described by an equation of the form

sin θ
∂h

∂x
= cos θ

∂

∂y

(

h
∂h

∂y

)

,

and find a solution for the shape h(x, y), where x is the downslope coordinate and y the
cross-slope coordinate.

If fluid drains through a fault in the boundary at a rate proportional to the local

depth of fluid of density ρ +∆ρ, i.e. with flux uh where u =
K∆ρg

µ
, find the maximum

change in depth of the current if the fault is of width ∆x at a distance x downslope, where
x ≫ ∆x.

[You may assume there is negligible cross-slope flow as the current migrates over
the width of the fault.]
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Consider the following flow geometry. There is a time-dependent source of actual (specific)
buoyancy flux Fs(t) alone at the top (at z = 0) of a room of depth H and cross-sectional
area Ac which cools (and thus increases the density) of the fluid at z = 0. There is an inflow
of actual volume flux QT (t) 6 0 through a top opening with effective area AT . There is an
outflow of actual volume flux QB(t) > 0 through a bottom opening at z = H. You may
assume that density variations are sufficiently small so that the Boussinesq approximation
may be used, the pressure is hydrostatic everywhere, and that there is an appropriate
reference density ρA, the (constant) density of the external ambient.

a) By applying conservation of volume, buoyancy and Bernouilli’s equation, show that

Fs(t) = g′R(0, t)QB(t) = g′R(0, t)A⋆

(
∫ H

0
g′Rdz

)1/2

, (∗)

where g′R(z, t) is the horizontally-averaged reduced gravity in the room and A⋆ is some
appropriate area, both of which you should define carefully.

b) Assuming that diffusion is insignificant in the interior of the room, write down a partial
differential equation for the evolution of g′R. You are given that there is initally a stable
stratification in the room such that

0 < g′R(0, 0) = g0 < g′R(H, 0) = gH = g0(1 + ∆).

Show that the reduced gravity in the room may be expressed as a separable function

g′R(z, t) = g0e
λz ĝ(t) = g0(1 + ∆)ζ ĝ(t), (†)

where ζ = z/H, and therefore that this model can describe initially linear profiles in
density in a particular limit which you should identify.

c) For general profiles defined by (†), show that

d

dτ
ĝ = −

[

ĝ3∆ log(1 + ∆)
]1/2

, (‡)

where time has been scaled with the draining time Td, so that

τ =
t

Td
, Td =

AcH

A⋆(g0H)1/2
.

Use (‡) to calculate the time-dependent form for g′R(z, t) and QB(t), and hence by
consideration of (∗), determine the required time-dependence of the source buoyancy flux
Fs(t) for consistency with the separable solution (†).
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a) Write down the standard form of the k − ǫ turbulence model, quoting the transport
equations for the turbulent kinetic energy k and dissipation rate ǫ and the appropriate eddy
viscosity hypothesis. Define k, ǫ and P (the term describing the production of turbulent
kinetic energy).

b) Consider a turbulent flow which is homogeneous, (i.e. statistically invariant with
respect to translations in the reference frame) unsheared, (i.e. there are no externally
imposed mean velocity gradients) and unforced. Show that the k − ǫ equations have
decaying solutions

k(t) = k0

(

t

t0

)

−n

, ǫ(t) = ǫ0

(

t

t0

)

−(n+1)

.

Express the reference time t0 in terms of the decay exponent n, ǫ0 and k0, and express n
in terms of the empirical constants in the k − ǫ model.

c) Now consider a turbulent shear flow, where the mean shear rate S has a single nonzero
component defined as

S =
∂

∂y
〈U〉 > 0,

where 〈.〉 is an appropriate ensemble averaging. It is empirically observed that Sk/ǫ is
constant, where S is the (imposed) mean shear rate. By considering an equation for the
turbulence time scale τ = k/ǫ, show that P/ǫ is also expected to be constant with time.

d) By considering the eddy viscosity and turbulence production P, show that

|〈uv〉|

k
= Cµ

Sk

ǫ
,

P

ǫ
= Cµ

(

Sk

ǫ

)2

, (∗)

where Cµ is the constant relating eddy viscosity to an expression involving k and ǫ.
Hence, explain why the empirical observations that |〈uv〉|/k ≃ 0.3 and P ≃ ǫ suggest
that Cµ = 0.09 is a self-consistent choice.

e) Now relax the assumption that Sk/ǫ is a constant with time, but rather that Sk/ǫ
relaxes to a constant A with the evolution equation

d

dt

( ǫ

k

)2
= −α

ǫ

k

(

ǫ2

k2
−

S2

A2

)

, (†)

where α is a constant. Using (∗), derive expressions for α and A in terms of the parameters
of the k − ǫ model so that (†) is consistent with the ǫ equation in standard form.
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