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1

State and prove the Hales–Jewett theorem, and deduce van der Waerden’s theorem.

Prove the strengthened van der Waerden theorem.

Is the following strengthening of the Hales–Jewett theorem true or false: for any

m and k there exist n and d such that whenever [m]n is k-coloured there exists a

monochromatic line whose active coordinate set has size d?

2

Show that if a1, . . . , an are non-zero rationals then the matrix (a1, . . . , an) is partition

regular if and only if some (non-empty) subset of the ai has sum zero.

[You may assume van der Waerden’s theorem. No form of Rado’s theorem may be

assumed without proof.]

For an m × n matrix A, and a subset S of the positive integers, we say that A is

partition regular over S if whenever S is finitely coloured there exists a vector x ∈ Sn,

with all its entries having the same colour, such that Ax = 0.

(i) Show that if a1, . . . , an are non-zero rationals then the matrix (a1, . . . , an) is

partition regular over the set of even positive integers if and only if it is partition regular.

(ii) Show that if a1, . . . , an are non-zero rationals then the matrix (a1, . . . , an) is

partition regular over the set of odd positive integers if and only if the sum of all the ai is

zero.

3

Prove that there exists an idempotent ultrafilter in βN.

[You may assume that βN is a (non-empty) compact Hausdorff space, and that the

operation + on βN is associative and left-continuous.]

Deduce Hindman’s theorem.

[You may assume simple properties of ultrafilters and their quantifiers.]

(i) Does there exist an idempotent ultrafilter that has as a member the set

{x ∈ N : x is not a multiple of 10}?

(ii) Does there exist an idempotent ultrafilter that has as a member the set

{x ∈ N : x is not a power of 10}?
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4

What does it mean to say that a subset of N(ω) is completely Ramsey? Define the

∗-topology on N
(ω), and explain what it means for a subset of N(ω) to be ∗-Baire.

Give an example of a set that is not Ramsey, and also an example of a set that is

Ramsey but not completely Ramsey.

Prove that a subset of N(ω) is completely Ramsey if and only if it is ∗-Baire.

[You may assume that every ∗-open set is completely Ramsey.]

Is N
(ω) ∗-meagre? Is it τ -meagre? Justify your answers.
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