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1

Define the shadow ∂A of an r-uniform family A ⊂ [N ](r), and state the Kruskal–

Katona theorem.

Prove that, if |A| =
(

x
r

)

where x ∈ R and x > r − 1, then |∂A| >
(

x
r−1

)

.

A graph G on n vertices and m edges can be viewed as G ∈ E(m) where E = [n](2).

There are
(

N
m

)

such graphs, where N = |E| =
(

n
2

)

. Let Gm ⊂ E(m) be the family of those

graphs having m edges and containing no triangle. Define xm by |Gm| =
(

xm

m

)

, where

xm > m− 1. Define pm = |Gm|/|E(m)| = |Gm|/
(

N
m

)

.

Prove that
pm+1

pm
6

xm −m

N −m
.

Infer that

pm+k 6 pm

k−1
∏

i=0

xm − i

N − i

and hence that if pm 6
1
2 then p2m 6

1
4 .

2

Let p be prime and let 0 6 l1 < l2 < · · · < ls. Let A ⊂ P[n] be such that, for

1 6 i 6 s, there is no A ∈ A with |A| ≡ li (mod p), but for all distinct A,B ∈ A,

|A ∩B| ≡ li (mod p) for some i.

Show that |A| 6
∑s

i=0

(

n
i

)

. Show further that, if there is some r with |A| ≡ r (mod p)

for all A ∈ A and r 6≡ j (mod p) for 0 6 j < s, then |A| 6
(

n
s

)

.

In the latter case, give an example to show that |A| >
(

n
s

)

is possible if the condition

r 6≡ j (mod p) for 0 6 j < s be dropped.

3

Define the vertex boundary B(A) of a subset A ⊂ P[n].

State and prove Harper’s inequality for the minimum size of the vertex boundary.

[You may assume, if you wish to, the Kruskal–Katona theorem.]

For i, j ∈ [n] let Cij be the usual compression operator. Is it true that, if A ⊂ [n](r),

then |B(CijA)| 6 |B(A)|?
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4

Let n ≡ 0 (mod 4) and let A ⊂ P[n] satisfy |A ∩B| 6= n/4 for all A,B ∈ A. Prove

that |A| 6 1·999n. [You may assume that
∑

j6γn

(

n
j

)

6 2H(γ)n for 0 6 γ 6 1/2. You may

also assume Harper’s inequality.]

Suppose now that A satisfies |A ∩B| 6= ℓ for all A,B ∈ A. Indicate how to modify

your proof to show |A| 6 1·999n if ℓ = ⌊n/8⌋.

If ℓ = ⌊2n/3⌋, must |A| 6 1·999n still hold?
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