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(a) Let X be a manifold and consider the cotangent bundle π : T ∗X → X equipped
with its canonical symplectic form ω = −dα, where α is the Liouville 1-form. Let σ be a
closed 2-form on X and define

ωσ := ω + π∗σ.

Show that ωσ is a symplectic form.

(b) Let θ be a 1-form on X which we also regard as a section θ : X → T ∗X. Show
that θ(X) is a Lagrangian submanifold of (T ∗X,ωσ) if and only if σ = dθ. Conclude that
if the cohomology class of σ is not zero, then there are no Lagrangian submanifolds L in
(T ∗X,ωσ) for which π|L : L → X is a diffeomorphism.

(c) Assume that σ is exact. Is it true that (T ∗X,ω) and (T ∗X,ωσ) are symplecto-
morphic?
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Let M be a compact manifold without boundary. Assume that αt, t ∈ [0, 1], is a
smooth family of contact forms on M . Show that there exists an isotopy ρt : M ×R → M

and a family of smooth nowhere-vanishing functions ut : M → R, t ∈ [0, 1], such that
ρ∗tαt = ut α0 for all t ∈ [0, 1].

[Hint: Search for a time-dependent vector field which belongs to the kernel of αt.]
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Let (M,ω) be a symplectic manifold and let X be a compact Lagrangian sub-
manifold. Let ω0 denote the canonical symplectic form of T ∗X. Show that there are
neighbourhoods U0 of X in T ∗X and U of X in M , and a diffeomorphism ϕ : U0 → U

such that ϕ∗ω = ω0 and ϕ ◦ i0 = i, where i0 : X → T ∗X and i : X → M are the inclusion
maps.

[You may assume the relative version of the Moser theorem, provided it is clearly
stated.]

Part III, Paper 15



3

4

(a) Let X be n-dimensional manifold and let α denote the Liouville 1-form of T ∗X.
Given a diffeomorphism f : X → X, explain how to lift it to a natural diffeomorphism
f# : T ∗X → T ∗X such that f∗

#α = α.

(b) Let g : T ∗X → T ∗X be a diffeomorphism such that g∗α = α. Show that there
exists a diffeomorphism f : X → X such that f# = g.

(c) Give an example of a symplectomorphism of T ∗X which does not preserve the
Liouville 1-form α.
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