

## MATHEMATICAL TRIPOS Part III

Thursday, 31 May, 2012 1:30 pm to 3:30 pm

## PAPER 15

## SYMPLECTIC GEOMETRY

Attempt no more than **THREE** questions.

There are **FOUR** questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$ 

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$ 

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.



1

(a) Let X be a manifold and consider the cotangent bundle  $\pi: T^*X \to X$  equipped with its canonical symplectic form  $\omega = -d\alpha$ , where  $\alpha$  is the Liouville 1-form. Let  $\sigma$  be a closed 2-form on X and define

$$\omega_{\sigma} := \omega + \pi^* \sigma.$$

Show that  $\omega_{\sigma}$  is a symplectic form.

- (b) Let  $\theta$  be a 1-form on X which we also regard as a section  $\theta: X \to T^*X$ . Show that  $\theta(X)$  is a Lagrangian submanifold of  $(T^*X, \omega_{\sigma})$  if and only if  $\sigma = d\theta$ . Conclude that if the cohomology class of  $\sigma$  is not zero, then there are no Lagrangian submanifolds L in  $(T^*X, \omega_{\sigma})$  for which  $\pi|_{L}: L \to X$  is a diffeomorphism.
- (c) Assume that  $\sigma$  is exact. Is it true that  $(T^*X, \omega)$  and  $(T^*X, \omega_{\sigma})$  are symplectomorphic?

 $\mathbf{2}$ 

Let M be a compact manifold without boundary. Assume that  $\alpha_t$ ,  $t \in [0,1]$ , is a smooth family of contact forms on M. Show that there exists an isotopy  $\rho_t : M \times \mathbb{R} \to M$  and a family of smooth nowhere-vanishing functions  $u_t : M \to \mathbb{R}$ ,  $t \in [0,1]$ , such that  $\rho_t^* \alpha_t = u_t \alpha_0$  for all  $t \in [0,1]$ .

[Hint: Search for a time-dependent vector field which belongs to the kernel of  $\alpha_t$ .]

 $\mathbf{3}$ 

Let  $(M, \omega)$  be a symplectic manifold and let X be a compact Lagrangian submanifold. Let  $\omega_0$  denote the canonical symplectic form of  $T^*X$ . Show that there are neighbourhoods  $U_0$  of X in  $T^*X$  and U of X in M, and a diffeomorphism  $\varphi: U_0 \to U$  such that  $\varphi^*\omega = \omega_0$  and  $\varphi \circ i_0 = i$ , where  $i_0: X \to T^*X$  and  $i: X \to M$  are the inclusion maps.

[You may assume the relative version of the Moser theorem, provided it is clearly stated.]



4

- (a) Let X be n-dimensional manifold and let  $\alpha$  denote the Liouville 1-form of  $T^*X$ . Given a diffeomorphism  $f:X\to X$ , explain how to lift it to a natural diffeomorphism  $f_\#:T^*X\to T^*X$  such that  $f_\#^*\alpha=\alpha$ .
- (b) Let  $g: T^*X \to T^*X$  be a diffeomorphism such that  $g^*\alpha = \alpha$ . Show that there exists a diffeomorphism  $f: X \to X$  such that  $f_\# = g$ .
- (c) Give an example of a symplectomorphism of  $T^*X$  which does not preserve the Liouville 1-form  $\alpha$ .

## END OF PAPER