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1

Let K be a field and let A be a central simple algebra over K.

1. Give the definition of the reduced norm Nrd : A → K and show that it does not
depend on choices.

2. Define the Cr-property for fields and state the theorems of Chevalley, Lang and
Tsen respectively, giving examples of C1-fields [no proofs are required]. Let L/K be a
finite extension of fields. Show that if K is C1, then L is C1.

3. Prove that if K is C1, then Br(K) = 0.

4. If K is the function field of a curve over a finite field, show that A is split by a
cyclic extension of K.

5. Let K be a C2-field and let D be a central division algebra over K. Show that
Nrd : D → K is surjective.

2

LetK be a (non-archimedean) complete local field with perfect residue field k. State
Witt’s theorem [no proof is required].

From now on, k is a finite field. Define explicitly the invariant map invK : Br(K) →
Q/Z and show that it is an isomorphism [you may quote without proof any results from the
lectures concerning the cohomology of finite fields and the Brauer group of the maximal
unramified extension of K].

Let L/K be a finite field extension. Show that invK ◦ CorL/K = invL and
invL ◦ResL/K = [L : K] · invK .

How many division algebras central overK of degree n are there, up to isomorphism?
[You may quote any results from the lectures concerning division algebras and their
splitting fields.]

3

Let L/K be a finite Galois extension. State and prove Galois descent for finite-
dimensional L-vector spaces equipped with a semi-linear action of Gal(L/K).

Let CSAn(L/K) be the set of isomorphism classes of central simple algebras over K
of degree n split by L. Define a natural map CSAn(L/K) → H1(Gal(L/K),AutL(Mn(L)))
and prove it is an isomorphism.
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In this question, any results from the lectures can be assumed without proof as long
as they are clearly stated.

1. Let K be a field of characteristic p > 0. Show that Br(K) is p-divisible, i.e. that
for all x ∈ Br(K) there exists a y ∈ Br(K) such that x = py.

2. Let now K be a field of characteristic 6= p and let n be a positive integer. Let
Ks denote a separable closure of K. Show that the following statements are equivalent:

(i) cdp(K) 6 n

(ii) For all algebraic extensions L/K, we have Hn+1(L,K×

s ){p} = 0 and Hn(L, ,K×

s ) is
p-divisible.

(iii) For all finite extensions L/K of degree prime to p, we have Hn+1(L,K×

s ){p} = 0
and Hn(L, ,K×

s ) is p-divisible.

Here, for A a torsion abelian group, A{p} denotes the p-primary torsion subgroup
of A. It might be useful to introduce the Galois module µp of pth-roots of unity in K×

s .
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