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(a) In [M°P,Set] for M a monoid observe that an object X is a right action X x M — X
of M on aset X and that, Y being another object, Hom(X,Y") is the set of equivariant
maps e : X — Y [maps with e(zm) = (ex)m for all x € X, m € M]. Prove that
the exponential YX in [M°P,Set] is the set Hom(M x X,Y) of equivariant maps
e: M x X — Y, where M is the set M with right action by M, with the action
e — ek of k € M on e defined by (ek)(g,z) = e(kg, ).

(b) For objects X,Y in [G°P, Set], for G a group, show that the exponential Y* can be
described as the set of all functions f : X — Y, with the right action of g € G on such
a function defined by (fg)z = [f(xg~!)]g for z € X.

For any set T, the constant presheaf T on a space X has T(U) = T for all open
sets U in X, with all restriction maps the identity. Show, using germs, that the associated
étale bundle is the projection p : X x T — X of the product, where T" has the discrete
topology; conclude that the associated sheaf is the “constant” sheaf Ap, for which Ap(V)
is the set of all locally constant functions V' — T'. Prove also that this defines a functor
A : Set — Sh(X) which is left adjoint to the global sections functor Sh(X) — Set.

Sketch the proof that every functor f : C — D between small categories C and D
induces an essential geometric morphism [C°P, Set] — [D°P, Set].

Sketch the proof that every Grothendieck topos is an elementary topos and give an
explicit description of the Heyting algebra operations on its subobject lattices.
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(a) Show that every Grothendieck topos admits a unique (up to isomorphism) geometric
morphism to Set.

(b) A Grothendieck topos £ is said to be local if the direct image of the unique geometric
morphism £ — Set is also an inverse image functor. What can you say about a small
category C (resp. a topological space X) if [C, Set] (resp. Sh(X)) is a local topos?

(a) Introduce the notion of geometric theory and sketch the construction of classifying
toposes via syntactic sites.

(b) Is the classifying topos of a Horn theory always (equivalent to) a presheaf topos?

(c) Explain the sense in which classifying toposes can act as ‘bridges’ for transferring
information between Morita-equivalent theories [You might wish to mention the
duality theorem].
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