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1

(a) Let C be a locally small category. Define the Yoneda embedding Y : Cop → [C,Set].
State and prove the Yoneda Lemma.

(b) Let F,G : C → Set be functors. Use the Yoneda Lemma to show that a natural
transformation α : F → G is a monomorphism in [C,Set] if and only if all components
αA are monomorphisms in Set.

2

(a) Prove that if a category has equalisers and finite products, then it has all finite
limits.

(b) Deduce that if a category has a terminal object and pullbacks, then it has all finite
limits.

(c) Show that if C has pullbacks, then each slice category C/A is finitely complete.

3

(a) Define the terms monomorphism, epimorphism, strong monomorphism, regular

monomorphism and balanced category. Show that a regular monomorphism is indeed
a monomorphism. Show that every regular monomorphism is strong.

(b) If every monomorphism in C is strong, show that C is balanced. Conversely, if C is
balanced and has pullbacks, show that every monomorphism in C is strong.

[You may assume the result that pullbacks preserve monomorphisms.]

4

State and prove the Special Adjoint Functor Theorem.

[You may use standard results from the course provided they are stated clearly.]
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5

Consider a functor G : C → Set with C locally small and complete.

(a) Define, for each object X ∈ Set, the category (X ↓ G).

(b) Show that G is representable if and only if (1 ↓ G) has an initial object.

(c) Show that a complete, locally small category has an initial object if and only if it
has a weakly initial set.

(d) Deduce that G : C → Set is representable if and only if it preserves limits and (1 ↓ G)
has a weakly initial set.

[You may assume results about limits in (X ↓ G), provided they are stated clearly. You
may also assume that representable functors preserve limits.]

6

(a) Define the structure of a monad on a category C, and the category of algebras CT

for a monad T. Show that any adjunction F ⊣ G, where F : C → D and G : D → C,
induces a monad on C.

(b) Prove that there is an adjuction FT ⊣ GT with FT : C → CT and GT : CT → C

inducing the monad T.

7

(a) Define the notions of semi-additive and preadditive category, and show that finite
products and coproducts coincide in a semi-additive category.

(b) Recall that, in any category, a parallel pair f, g : A → B is reflexive if there exists
r : B → A such that fr = gr = 1B . Show that any reflexive pair (f, g) in a
preadditive category C has the structure of an internal groupoid : that is, for each
object C, the set C(C,B) is the set of objects of a groupoid whose morphisms are
the elements of C(C,A), with “domain” and “codomain” given by composition with
f and g respectively.
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(a) Recall that a pseudo-epimorphism is a morphism g : A → B such that fg = 0 implies
f = 0. Let C be pointed with kernels and cokernels such that every monomorphism
in C is normal. Prove that every morphism of C factors as a pseudo-epimorphism
followed by a monomorphism.

(b) Define image factorisation in an abelian category. State the Short Five Lemma.
Show how to use image factorisation to deduce the Five Lemma from the Short
Five Lemma.
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