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(a) State and prove a classification of the non-archimedean absolute values on Q.

(b) Let (K,|-|) be a non-archimedean locally compact valued field, and let ¢ € K be an
element satisfying 0 < [t| < 1.

(i) Show there exists a finite subset A C K such that every element of K can be
written uniquely as a Laurent power series in ¢t with coefficients in A.

(ii) Show that if char(K) = 0 then K is a finite extension of Q, for some prime p.

(iii) Give an example of a field that is complete with respect to a discrete valuation
but is not locally compact. Justify your answer.

(a) State and prove a version of Hensel’s lemma.
(b) Determine the number of roots of f(X) = X3 —5X + 20 in Z, for p = 2,3,5.

(c) Let K = Q(a) where a is a root of f. Show that the different of K is p2q where p and
q are ideals in Ok of norms 5 and 103.

[The discriminant of X3+ aX + b is —4a® — 27b%. General facts about the different
may be quoted without proof provided you state them clearly.]

(a) Prove that if non-trivial absolute values |- |; and |- |2 on a field K induce the same
topology then there exists ¢ > 0 such that |z|y = |z|{ for all z € K.

(b) Let K be a number field and S a finite set of places of K.

(i) Define the group of ideles Jx. Show that if x € Jx and € > 0 then there exists
y € K such that |z, —y|, < e forall v e S.

(ii) Show that there is a quadratic extension L/K such that every (finite) prime p
in S is inert in L (i.e. pOyp, is a prime).
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(a) Show that an extension of p-adic fields L/K is totally ramified if and only if L = K («)
where « is a root of an Eisenstein polynomial.

(b) State and prove Krasner’s lemma.

(c) Show that there are only finitely many extensions of K of any given degree. Determine
the number of quadratic extensions of K in the case p is odd.

[Results about unramified extensions may be quoted without proof.]

Write an essay on

EITHER : The Herbrand quotient and its role in norm index calculations for L/K
a cyclic extension of p-adic fields.

OR : The Hilbert norm residue symbol and the Hasse-Minkowski theorem.
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