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1

State and prove the Möbius inversion formula.

State the prime number theorem with classical error term.

Deduce that
1
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≪ 1/ logX.

2

Define the Granville–Soundararajan distance D(f, g;X) between two arithmetical
functions f, g : N → C with |f(p)| = |g(p)| = 1 for all primes p, and show that it is a
distance.

State and prove an asymptotic for D(1, µ;X), where µ is the Möbius function.

Let f : N → C be a multiplicative function supported on the squarefrees, and write

ν =
∑

n∈N

δlognf(n)n
−1− 1

logX .

Show that if |ν̂(t)| > δ logX then D(f, nit;X) = Oδ(1).

3

Define the Riemann ζ-function ζ(s) for ℜs > 1. Show that it admits a meromorphic
extension to ℜs > 0, analytic except for a simple pole at s = 1. Define the Γ-function and
state the functional equation for ζ. What is meant by the critical strip? Show that ζ has
zeros at −2,−4,−6, . . . and nowhere else outside the critical strip.

[You may assume that zΓ(z) = Γ(z + 1) for ℜz > 0 without proof, as well as the
fact that Γ(z) 6= 0.]

Prove that the number of zeros of ζ(s) in the critical strip with imaginary part of
magnitude at most T (T > 2) is O(T log T ).

[You may use Jensen’s formula without proof.]

Show that ζ has no zeros on the line ℜs = 1.
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“If a bounded function f : N → C correlates with the Möbius function then f is
either somewhat periodic or somewhat multiplicative”. State a precise version of this
principle.

Show that

lim
X→∞
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∣
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5

Let φ : R → R be a smooth function with φ(0) = 1 and φ(x) = 0 for |x| > 1/3 (you
may assume without proof that such a function exists). Explain why the function

F (n) =
(

∑

d|n

µ(d)φ(
log d

logX
)
)2

satisfies F (p) = 1 whenever p > X1/3 is a prime.

Define a function ψ by

exφ(x) =

∫ ∞

−∞
ψ(t)e−ixtdt.

Show that for any fixed A > 0 we have the estimate |ψ(t)| ≪A |t|−A for all |t| > 1 [you
may assume the Fourier inversion formula].

Find a simple expression for

∫ ∞

−∞

∫ ∞

−∞
ψ(t)ψ(t′)

(1 + it)(1 + it′)

2 + it+ it′
dtdt′.

Hence, or otherwise, give an asymptotic as X → ∞ for

∑

n∈I

F (n),

for any interval I ⊆ N of length X.

[You should give no more than the basic structure of the proof, to the point where
an educated reader could reasonably easily fill in, or at least believe, the details.]

Show that

π(X0 +X)− π(X0) ≪
X

logX

whenever X0,X > 2.
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