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Let (Xi) be i.i.d. random variables with P(X1 = +1) = P(X1 = −1) = 1/2. Define
S0 = 0 and for all n > 1 let Sn =

∑n
i=1

Xi.

(a) Let T1 = min{n > 0 : Sn = 1}. Explain why T1 is a stopping time and calculate its
expectation.

(b) Construct a martingale which converges almost everywhere but not in L1.

[Hint: Use the stopping time T1 from (a) in the construction.]

(c) Let T = min{n > 2 : Sn = Sn−2 +2} and U = T − 2. Are T and U stopping times?
Justify your answers.

(d) For T as defined in (c), what is E[T ]?

[You may assume any form of the Optional Stopping Theorem provided you state
it clearly.]

2

(a) State Cramer’s Theorem on the large deviations of the sample mean of a sequence
of i.i.d random variables.

(b) Let (Yn) be a sequence of i.i.d. Exponential(1) random variables. Define Sn =∑n
i=1

Yi. Show that for all a > 0 the limit

lim
n→∞

1

n
logP(Sn > na)

exists and determine its value.

(c) Let (Un) be a sequence of i.i.d. random variables uniformly distributed on [0, 1]. Set

Xn = U
−1/2
n and Wn =

∑n
k=1

Xk. Show that for all a > 0 the limit

lim
n→∞

1

n
logP(Wn > na)

exists and determine its value.
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(a) Give the definition of a Poisson random measure.

(b) Let Φ and Ψ be two independent Poisson random measures of intensities µ and
ν respectively. Show that Φ + Ψ is also a Poisson random measure and find its
intensity.

(c) Let (Zi) be the arrival times of a Poisson process of intensity 1 on the interval
[0,∞), so that the Poisson process N([0, t]) is the number of arrivals in [0, t]. Define
X =

∑
i Z

−2

i . Let (Wi) be the arrival times of another Poisson process independent
of the first one and define Y =

∑
i W

−2

i . Show that X + Y has the same law as cX
for some constant c and find the value of c.

(d) Let Π = {Xi} be a Poisson random measure in R
d whose intensity is the standard

Lebesgue measure on R
d. Write X1,X2, . . . for the positions of the atoms of Π, listed

in increasing order of their distance from 0. Let f : R+ → R
d be a deterministic

continuous function and let (ξi(t)) be independent standard Brownian motions in
d dimensions. We now consider the atoms moving with Brownian motion, with
trajectories of the form (Xi + ξi(t))t>0. We define

T = inf{t > 0 : f(t) ∈ ∪iB(Xi + ξi(t), 1)} .

Show that
P(T > t) = exp(−E[vol(W (t))]) ,

where W (t) = ∪s6tB(ξ(s) + f(s), 1).

[You may assume the thinning property, but any other result needs to be proved.]
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(a) State and prove Doob’s maximal inequality.

Let (Xi) be N(−1, 1) i.i.d. random variables and let Sn = X1 + . . . + Xn and S0 = 0..
Write Z = maxi>0 Si.

(b) Show there is a unique λ > 0 so that (eλSn) is a martingale.

(c) Show that P(Z > t) 6 e−λt.

(d) Show that E[ebZ ] is finite for all b < λ.
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(a) Let B be a Brownian motion in d = 2 dimensions and let x ∈ R
2 such that

r < |x| < R, where 0 < r < R. For all a > 0 we define

Ta = inf{t > 0 : |Bt| = a} .

Show that

Px(Tr < TR) =
logR− log |x|
logR− log r

.

(b) Show that planar Brownian motion does not hit points. In particular, show that
planar Brownian motion never returns to its starting point. Show further that,
for any open set U containing the starting point, the set of times at which planar
Brownian motion visits U is unbounded.

(c) Show that Brownian motion in 3 dimensions does not hit lines, i.e. if it is started
outside a line, then a.s. it will never hit it.

6

(a) Let (Bs) be a standard Brownian motion in one dimension. Show that tαP(Bs 6

1,∀s 6 t) converges to a finite positive constant as t → ∞ for some α and find the
value of α and the constant.

(b) State Donsker’s invariance principle.

(c) What is the limit of P(maxj6n Sj > a
√
n) as n → ∞ for a > 0, where (Sj) is a

simple random walk on Z. Justify your answer.
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