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(i). Let (Xt) be a stationary time series with autocovariance function (γk : k = 0, 1, . . .).
Under what condition on (γk) does a spectral density function fX : [0, π] → [0,∞)
exist? Assuming this condition is satisfied, write down the expressions for fX(ω) in
terms of the (γk), and for γk in terms of fX .

(ii). The process (Yt) is defined by:

Yt =
∞∑

s=−∞

asXt−s

where (at) is a sequence of real numbers such that
∑∞

s=−∞ |as| < ∞. Show that the
spectral density function fY of Y is given by

fY (ω) = |α(ω)|2 fX(ω)

where α(ω) =
∑∞

s=−∞ ase
isω.

(iii). What is meant by saying that (Xt) is a ARMA(p, q) process with autoregressive
coefficients (φ1, . . . , φp) and moving average coefficients (θ1, . . . , θq)? Derive a
formula for the spectral density function fX of (Xt).

(iv). Show that the spectral density of a AR(1) process with autoregressive coefficient
φ ∈ (−1, 1) is

f(ω) =
σ2

π(1− φ2)

∞∑

k=−∞

φ|k|zk

where z = eiω and σ2 is the variance of the driving white noise process.

(v). Hence, or otherwise, compute the autocovariance function of a ARMA(1, 1) process
having autoregressive coefficient φ and moving average coefficient θ.
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The MA(1) process (Xt) is generated as

Xt = θǫt−1 + ǫt

where θ ∈ R and (ǫt) is a white noise process with variance σ2. What is the autocovariance
function (γk : k ∈ N) of (Xt)?

The sequence is observed from time 1. Uncorrelated variables (Ut), and scalars λt, φt

(t = 1, 2, . . .), are determined recursively by:

U1 = X1 (1)

Ut = Xt − λtUt−1 (t = 2, 3, . . .) (2)

φt = var(Ut). (3)

Let X̂t be the best linear predictor of Xt based on (X1, . . . ,Xt−1). Justify the recursive
formulae:

λt = γ1/φt−1 (4)

φt = γ0 − γ1λt (5)

X̂t = λtUt−1 (6)

Ut = Xt − X̂t (7)

with the starting conditions λ1 = 0, U0 ≡ 0.

You may assume that λ = limt→∞ λt exists and lies in [−1, 1]. Show that λ = θ if
|θ| 6 1. What is λ when |θ| > 1?

We observe X1 = −1.3, X2 = 0.8. Assuming σ2 = 1, θ = −1, find the best linear
predictors of X3 and X4 based on these observations, and the variance of the prediction
error in each case.
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Describe, without proof, how the polar rejection method could be applied to generate
a random variable Y from the chi-squared distibution with 1 degree of freedom, Y ∼ χ2

1.

[Hint: If Z has the standard normal distribution, and Y = Z2, then Y ∼ χ2
1.]

The variable X is said to have the inverse Gaussian distribution with mean µ > 0
and shape parameter λ > 0, and we write X ∼ IG(µ, λ), if its probability density function
is

fX(x) =

(
λ

2πx3

)1/2

exp

{−λ(x− µ)2

2µ2x

}
(x > 0). (1)

Show that the following algorithm will generate a variable X ∼ IG(µ, λ):

(i). Generate, independently, Y ∼ χ2
1, and U , uniformly distributed on [0, 1].

Note: Y has density

fY (y) =
1√
2π

y−
1

2 exp
(
−1

2
y
)

(y > 0).

(ii). Define X−, X+ to be, respectively, the smaller and larger roots of the quadratic
equation

λ(x− µ)2 − Y µ2x = 0. (2)

(iii). If U 6 µ/(µ +X−) set X = X− .

(iv). Otherwise set X = X+.

[Hint: Compute Pr{X ∈ (x, x + dx)}, treating the cases x 6 µ and x > µ separately.

Note that X− × X+ = µ2, and so X 6 µ if and only if X = X−, while µ/(µ + X−) =
X+/(µ +X+).]

Using equation (2), or otherwise, show that the distribution of λ(X − µ)2/µ2X is χ2
1.
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Describe the Gibbs sampler for generating a random configuration from the joint
distribution P of variables (X1, . . . ,Xk). Show that P is a stationary distribution of the
associated Markov chain.

A statistical model for a two-dimensional image is as follows. With each pixel (i, j)
(1 6 i, j 6 N) in aN×N array is associated a random variable, Xij , having possible values
0 and 1. Two pixels (i, j) and (i′, j′) are said to be neighbours if either i = i′ and |j−j′| = 1,
or j = j′ and |i − i′| = 1. The probability of any configuration x = (xij : 1 6 i, j 6 N)
for the collection X = (Xij : 1 6 i, j 6 N) of all these variables has the form:

p(x) = exp(λ+ αn1 + βn2) (1)

where λ, α, β are constants, n1 is the total number of 1’s in the configuration x, and n2 is
the total number of pairs of neighbouring pixels (i, j), (i′, j′) such that xij = xi′j′ = 1.

Compute the probability pij that Xij = 1, given the values of the variables at all
other pixels, as a function of the total number zij of 1’s at the pixels neighbouring (i, j).
Hence devise a Gibbs sampler scheme for generating a random configuration from the
distribution (1).

Suppose the pixels are coloured alternately black and white, as on a chessboard, so
that neighbouring pixels are of opposite colours. Let B denote the collection of X’s at
black pixels, and W the collection of X’s at white pixels. Describe the Gibbs sampler for
generating a draw from the distribution of (B,W ).

The image we actually observe is a noisy version Y = (Yij) of X: given X = x,
the Y ’s are independent, Yij having the normal distribution with mean xij and variance 1.
How would you modify the above Gibbs schemes to sample from the posterior distribution
of X, given Y = y?
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