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Throughout this paper we define dimensionless spacetime coordinates x0 = t and
x1 = x. The sine-Gordon field theory is defined to be the theory of a dimensionless real
scalar field φ(x, t) with Lagrangian density,

L =
m2

β

[

1

2
∂µφ∂

µφ + (cosφ − 1)

]

,

where m is a mass scale and β is a dimensionless coupling. With these conventions the
sine-Gordon equation reads

∂µ∂
µφ + sinφ = 0 .

1

The Bäcklund Transformation ρ(x, t) of the function κ(x, t) is defined by the
equations,

∂

∂x+
(ρ − κ) = 2a sin

(

ρ+ κ

2

)

,

∂

∂x−
(ρ + κ) =

2

a
sin

(

ρ− κ

2

)

,

where a is an arbitrary real number and x± are lightcone coordinates in two-dimensional
space time: x± = (x± t)/2. Show that if κ(x, t) obeys the sine-Gordon equation then so
does ρ(x, t).

Show that the sine-Gordon kink solution arises as the Bäcklund transformation of the
vacuum κ(x, t) = 0 and derive a relation between the kink velocity and the parameter a.

Explain briefly how the existence of the Bäcklund Transformation is related to the
integrability of the sine-Gordon equation.

Taking κ(x, t) = 4 tan−1 ex and a = 1, integrate the equations to find ρ(x, t) and give a
physical interpretation of this solution of the sine-Gordon equation.
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Consider the theory of a single dimensionless complex scalar field ψ(x, t) with
Lagrangian density,

L = M2

[

∂µψ∂
µψ∗

1− λ2|ψ|2
− |ψ|2

]

,

where M is a mass scale and λ is a dimensionless coupling.

This theory has a stable, time-dependent soliton solution,

ψcl(x, t) =
cos(α)

λ

exp (i sin(α)t)

cosh (cos(α)x)

for −π/2 < α 6 π/2. [You are not required to verify that this expression solves the
equations of motion.] Calculate the mass of this soliton and its charge under the U(1)
global symmetry: ψ → exp(iδ)ψ, ψ∗ → exp(−iδ)ψ∗ for real δ.

By considering the symmetries of the Lagrangian, write down a more general soliton
solution depending on four real parameters (including α).

Apply the Bohr-Sommerfeld condition to find a semiclassical quantisation condition for
this family of solutions and determine the corresponding spectrum of particle masses as a
function of U(1) charge and the parameters M and λ. For a given value of λ, how many
stable particle states are there?

[In this question you may use without derivation the following definite integral:

∫ +∞

−∞

1

cosh2(X)− cos2(α)
dX =

2

cos(α) sin(α)

(

Sign[α]
π

2
− α

)

. ]
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Consider the following solution of the sine-Gordon equation,

φKK̄(x, t) = 4 tan−1





sinh
(

vt√
1−v2

)

v cosh
(

x√
1−v2

)



 .

Explain its interpretation in terms of the scattering of a kink (K) with an anti-kink (K̄).
Hence calculate the leading semi-classical approximation to the phase shift δKK̄(θ) for
K-K̄ scattering as a function of difference θ of the K and K̄ rapidities.

For special values of the sine-Gordon coupling β defined by

γ = β2
(

1−
β2

8π

)−1

=
8π

N
,

where N is a positive integer, the exact transmission amplitude for K-K̄ scattering is
given as

ST (θ) = exp (iδKK̄(θ)) = eiπN
N−1
∏

k=1

eθ−i(πk

N
) + 1

eθ + e−i(πk

N
)
.

The corresponding reflection amplitude vanishes: SR(θ) ≡ 0. From this result deduce the
spectrum of K-K̄ boundstates for each value of N , explaining your reasoning.

Show that the exact expression for ST (θ) agrees with the result of your semiclassical
computation in the limit N → ∞. [Hint: To demonstrate this agreement you may find it

useful to consider the integral of the complex function log cos(z/2) around a rectangular

contour with corners at the points z = ±iθ, π ± iθ.]

4

Write an essay on instanton effects in quantum mechanics. Your account should
include a semiclassical analysis of tunneling in the double-well potential.
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