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1

What is a Fréchet space? Describe without proof how the topology of a Fréchet
space can be defined in terms of seminorms.

What is the weak topology on a Fréchet space? Show that it is a Hausdorff topology.
Show that a linear functional on a Fréchet space is continuous in the weak topology if and
only if it is continuous in the original topology.

Suppose that T is a linear mapping from a Fréchet space (E1, τ1) to a Fréchet space
(E2, τ2). Show that T is continuous when E1 and E2 are given their original topologies if
and only if it is continuous when they are given their weak topologies.
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Let Ω denote the Bernoulli space
∏

∞

j=1
{0, 1}j , with its product topology. What is

a cylinder set in Ω? Show that a cylinder set is open and closed, and that the cylinder
sets are a base for the topology on Ω.

IfA is a subset of Ω, let IA denote its indicator function, Show that S(Ω) = span{IC :
C a cylinder set} is a dense linear subspace of (CR(Ω), ‖.‖

∞
).

Suppose that φ is a positive linear functional on CR(Ω), with φ(IΩ) = 1. Show that
φ is continuous.

If C is a cylinder set, let l(C) = φ(IC). Show that φ extends to a unique countably
additive function on the open subsets of Ω.

Describe briefly how to show that there exists a unique probability measure P on
Ω such that φ(f) =

∫
Ω
f dP, for each f ∈ CR(Ω).

Suppose that (X, d) is a compact metric space and that φ is a positive linear
functional on CR(X), with φ(IX) = 1. Show that there exists a probability measure
Q on X such that φ(f) =

∫
X
f dQ, for each f ∈ CR(X). [You may assume that there is

a continuous surjection h of Ω onto X.]
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Suppose µ and ν are finite non-negative measures on a measurable space (Ω,Σ).
Show that there exist a non-negative f ∈ L1(µ) and a set B ∈ Σ with µ(B) = 0 such that
ν(A) =

∫
A
f dµ + ν(A ∩B) for each A ∈ Σ.

What does it mean to say that ν is absolutely continuous with respect to µ? Show
that ν is absolutely continuous with respect to µ if and only if there exist a non-negative
f ∈ L1(µ) such that ν(A) =

∫
A
f dµ for each A ∈ Σ.

Suppose that f ∈ L1(Ω,Σ, µ) and that Σ0 is a sub-σ-field of Σ. Show that there
exists f0 ∈ L1(Ω,Σ0, µ) such that

∫
A
f dµ =

∫
A
f0 dµ for all A ∈ Σ0.
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Let λd denote Lebesgue measure on the Borel sets of Rd. Suppose that G is a
collection of open balls in Rd which cover a compact set K. Show that there exists a finite
subset F of G whose elements are disjoint, such that λd(∪U∈FU) > λd(K)/3d.

Suppose that µ is a Borel probability measure on Rd. What does it mean to say
that µ has a spherical derivative at x? Suppose that µ and λd are mutually singular. Show
that µ has spherical derivative 0 at λd-almost every point of Rd.

Suppose that µ is a Borel probability measure on R1 and that µ and λ1 are mutually
singular. Show that the cumulative distribution F of µ (where F (t) = µ((−∞, t]) ) is
differentiable, with derivative 0, at λ1-almost every point of R.
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