MATHEMATICAL TRIPOS Part III

Thursday, 7 June, $2012 \quad 9{:}00 \ \mathrm{am}$ to $12{:}00 \ \mathrm{pm}$

PAPER 59

GALACTIC ASTRONOMY AND DYNAMICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

A galaxy has the potential

$$\Phi(R,z) = \frac{v_0^2}{2} \log(R^2 + z^2 q^{-2}),$$

where v_0 and q are constants and (R, ϕ, z) are cylindrical polar coordinates. What is the density distribution that generates this potential?

For which values of the parameters q and v_0 is the density everywhere positive definite?

Derive the velocity of circular orbits in the equatorial plane (z = 0) as a function of radius R. Hence, plot the rotation curve of the galaxy.

Explain why we may seek a distribution function $F = F(E, L_z^2)$, where E is the energy and L_z the angular momentum of the stellar orbits.

Using angled brackets to denote averages over the distribution function, demonstrate that the velocity dispersion tensor has the following properties

$$\langle v_R^2 \rangle = \langle v_z^2 \rangle \,,$$

and

$$\langle v_R v_z \rangle = 0 = \langle v_R v_\phi \rangle = \langle v_\phi v_z \rangle$$

Verify that the distribution function has the form

$$F(E, L_z^2) = AL_z^2 \exp(-4E/v_0^2) + B \exp(-2E/v_0^2),$$

where A and B are constants to be determined.

[*Hint:* You are reminded of the standard integral ($\alpha > 0$)

$$\int_{-\infty}^{\infty} \exp(-\alpha v^2) dv = \sqrt{\frac{\pi}{\alpha}} \,.$$

 $\mathbf{2}$

Derive the virial theorem for a galaxy in the form

$$2T_{ij} + \Pi_{ij} + W_{ij} = 0 \,,$$

where T_{ij}, Π_{ij} and W_{ij} are the kinetic energy, pressure and potential energy tensors respectively.

Suppose the galaxy has a spherically symmetric potential, $\Phi = \Phi(r)$, where r is the spherical polar radius. Consider a pressure-supported (that is, $T_{ij} = 0$) tracer population of stars with a flattened density $\rho(R, z)$, where (R, z) are cylindrical polar coordinates. Show that the virial ratio

$$\frac{\Pi_{RR}}{\Pi_{zz}} = \frac{\int \rho(R,z)\Phi'(r)\frac{R^2}{r}d^3r}{\int \rho(R,z)\Phi'(r)\frac{z^2}{r}d^3r},$$

where a prime denotes differentiation.

If the tracer density has the form

$$\rho(R,z) = \rho_0 (R^2 + z^2 q^{-2})^{-\gamma/2},$$

where ρ_0, q and γ are constants, show that the virial ratio is well-defined and has the value

$$\frac{\Pi_{RR}}{\Pi_{zz}} = \frac{\int_0^\pi \sin^3 \theta (\cos^2 \theta + q^{-2} \sin^2 \theta)^{-\gamma/2} d\theta}{\int_0^\pi \sin \theta \cos^2 \theta (\cos^2 \theta + q^{-2} \sin^2 \theta)^{-\gamma/2} d\theta}$$

In the limit of modest flattening $(q \rightarrow 1)$, show that

$$\frac{\Pi_{RR}}{2\Pi_{zz}} = 1 + \frac{\gamma}{5}(q^{-2} - 1) \,.$$

Interpret this result physically.

[Hint: you are reminded of the standard integral (m > 0)

$$\int_0^{\pi} \sin^m \theta d\theta = \frac{\sqrt{\pi}\Gamma(1/2 + m/2)}{\Gamma(1 + m/2)}$$

where $\Gamma(x)$ denotes the Gamma function.]

Part III, Paper 59

[TURN OVER

3

By separation of variables in cylindrical polar coordinates (R, ϕ, z) , show that Laplace's equation has solutions

4

$$\Phi(R,z) = \exp(\pm kz)J_0(kR)$$

where k is a constant and J_0 is the Bessel function of index zero.

By using Gauss' theorem, show that the potential of an infinitesimally thin disk of surface density $\Sigma(R)$ confined to the plane z = 0 is given by

$$\Phi(R,z) = \int_0^\infty S(k) J_0(kR) \exp(-k|z|) dk \,,$$

where

$$S(k) = -2\pi G \int_0^\infty J_0(kR) \Sigma(R) R dR \,.$$

Show that the velocity of circular orbits in the disk plane is given by

$$v_{\rm c}^2(R) = -R \int_0^\infty S(k) J_1(kR) k dk \,,$$

where J_1 is the Bessel function of index unity.

If the surface density in the disk behaves like

$$\Sigma(R) = \frac{\Sigma_0 R_0}{R} \,,$$

where Σ_0 and R_0 are constants, show that

$$v_{\rm c}^2(R) = GM(R)/R\,,$$

where M(R) is the mass interior to radius R.

Is this result surprising? Explain your answer.

[*Hint: you may assume the solution to the equation*

$$\frac{1}{u}\frac{d}{du}\left(u\frac{dJ}{du}\right) + J = 0$$

finite at u = 0 is the Bessel function $J_0(u)$. You may also assume Hankel's formula

$$F(r) = \int_0^\infty k dk \int_0^\infty R dR F(R) J_0(kR) J_0(kr) \,,$$

as well as the following properties of Bessel functions

$$\int_0^\infty J_0(x)dx = 1, \qquad \int_0^\infty J_1(x)dx = 1, \qquad \frac{dJ_0(x)}{dx} = -J_1(x).$$

Part III, Paper 59

 $\mathbf{4}$

Suppose there are two galaxies G_1 and G_2 which are to first approximation pointlike with masses M_1 and M_2 . G_1 and G_2 are in circular motion about their common centre of mass O. If the separation of G_1 and G_2 is R, show that the angular velocity of the line G_1G_2 in the centre of mass frame is

$$|\underline{\omega}|^2 = \frac{G(M_1 + M_2)}{R^3} \,.$$

Let us consider the equilibrium points of a small dwarf galaxy G with mass m, which is much smaller than M_1 and M_2 . Let us introduce Cartesian (x, y, z) with origin at O, and with z-axis parallel to $\underline{\omega}$ and x-axis along the line G₁G₂. Give a physical reason why the equilibrium points lie in the plane z = 0.

Show that the equilibrium points are the stationary points of

$$E(x,y) = -\frac{m\omega^2}{2}|\underline{r}_{\rm G}|^2 - \frac{GmM_1}{|r_{\rm G} - r_1|} - \frac{GmM_2}{|r_{\rm G} - r_2|}$$

where \underline{r}_{G} , \underline{r}_{1} and \underline{r}_{2} are the position vectors of G, G₁ and G₂ respectively.

Let $\underline{r}_{\rm G} = (x, y, 0)$. Using R as the unit of length and $G(M_1 + M_2)/R^2$ as the unit of energy, show that the stationary points on the line joining G₁ and G₂ are the extrema of

$$F(x) = -\frac{x^2}{2} - \frac{1 - \alpha}{|x + \alpha|} - \frac{\alpha}{|x + \alpha - 1|}$$

where $\alpha = M_2 / (M_1 + M_2)$.

Solve this equation in the limit of small α , and show that there are three equilibrium points:

$$\begin{split} \mathbf{L}_1 &= \left(1 - (\alpha/3)^{1/3}, 0, 0\right), \\ \mathbf{L}_2 &= \left(1 + (\alpha/3)^{1/3}, 0, 0\right), \\ \mathbf{L}_3 &= \left(-1 - 5\alpha/12, 0, 0\right), \end{split}$$

Now, by introducing plane polars with origin at G_1 , show that there are two further equilibrium points L_4 and L_5 such that triangles G_1G_2 L_4 and G_1G_2 L_5 are equilateral.

Sketch the surface E(x, y) and mark the points $L_1, \ldots L_5$.

END OF PAPER

Part III, Paper 59