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1

The vertical structure of a thin Keplerian accretion disc containing a mixture of gas
and radiation is governed by the equations

∂p

∂z
= −ρΩ2z , (1)

p = pg + pr =
kρT

µmmp

+
4σT 4

3c
, (2)

∂F

∂z
=

9

4
µΩ2 , (3)

F = −
16σT 3

3κρ

∂T

∂z
. (4)

(i) Explain briefly the physical interpretation of these equations.

(ii) Assuming that the ratio λ = pr/pg is non-zero and independent of z, and that µm is
a constant, show that the solution of equations (1) and (2) is of the form

T = T0

(

1−
z2

H2

)

, ρ = ρ0

(

1−
z2

H2

)3

, p = p0

(

1−
z2

H2

)4

for |z| < H, where H, T0, ρ0 and p0 are independent of z (but may depend on the
radial coordinate r). Express T0, ρ0 and p0 in terms of H and λ (as well as Ω and the
physical constants appearing in the equations). Show also that the surface density
Σ satisfies

420λ(λ + 1)3Σ =
(µmmp

k

)4 σ

c
H7Ω6 .

(iii) Assuming further that κ is constant, show that

µ =

(

λ

λ+ 1

)

4c

9κ

for |z| < H.

(iv) Although in this model the vertical profile of the effective viscosity µ differs from that
of the pressure, a Shakura–Sunyaev alpha parameter can be defined in a vertically
averaged way by

ν̄Σ =

∫ H

−H
µ dz =

α

Ω

∫ H

−H
p dz ,

where ν̄ is the mean effective kinematic viscosity and Σ is the surface density. Show
that

λ

λ+ 1
=

αHΩ

8c
κΣ

and

ν̄ =
αH2Ω

9
.
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Assuming that α is independent of r, deduce that the disc has a mean effective
kinematic viscosity ν̄(r,Σ) with the limiting dependences

ν̄ ∝

{

rΣ2/3 , λ ≪ 1 ,

r3/2Σ−2 , λ ≫ 1 .

Comment briefly on the viscous stability of the disc in the limits in which it is
dominated by gas pressure or radiation pressure.

[You may assume that

∫ 1

0

(1− x2)n dx =
22n(n!)2

(2n + 1)!
=

(

2n

2n+ 1

)(

2n − 2

2n − 1

)

· · ·
2

3

for positive integers n.]
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In the local approximation for astrophysical discs, a steady elliptical vortex patch
occupies the region

x2

b2
+

y2

a2
< 1 ,

where a > b > 0. The total velocity field inside the vortex has the form u = αy ex−βx ey,
where α and β are constants. The velocity field at large distance from the vortex is
u = −Sx ey. The relative vorticity (∇ × u)z is equal to −S outside the vortex and
−S+ ζ0 inside the vortex. The fluid may be considered to be incompressible and inviscid.
You may assume without proof that

ζ0
S

= −
(r + 1)

r(r − 1)
,

where r = a/b.

(i) Determine the constants α and β in terms of r and S.

(ii) Show that the pressure p inside the vortex is given by p/ρ = 1
2
Ax2+ 1

2
By2+constant,

and determine the constants A and B in terms of r, S and Ω (the angular velocity
of the frame of reference).

(iii) Formulate the equation of motion of a particle (in two dimensions) inside the vortex,
if the particle is subject to a drag force −γ(ẋ − u) per unit mass, where γ is a
constant drag coefficient, x(t) is the position vector of the particle and u(x) is the
velocity of the fluid. Show that there exist solutions of the form x ∝ eλt, where λ is
a root of the quartic equation

λ4 + 2γλ3 + [2Ω(2Ω − S) + γ2]λ2 + 2Ω(α+ β − S)γλ+ αβγ2 = 0 .

(iv) You may assume that the solutions of the real quartic equation λ4 + c3λ
3 + c2λ

2 +
c1λ + c0 = 0 all have Re(λ) < 0 if and only if c3, c2, c1 and c0 are all positive and
c3c2c1 > c23c0 + c21. Show that particles of all drag coefficients inside the vortex are
attracted to its centre if and only if

2Ω(2Ω − S) > Ω(α+ β − S) > αβ > 0 .

Show also that these conditions are satisfied in a Keplerian disc if r > 3.
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In the local approximation, a two-dimensional (‘razor-thin’) inviscid isothermal disc
satisfies the equation of mass conservation,

∂Σ

∂t
+∇ · (Σu) = 0 ,

and the equation of motion,

∂u

∂t
+ u ·∇u+ 2Ω× u = −∇Φ−∇Φd,m −

1

Σ
∇(c2sΣ) ,

where Σ(x, y, t) is the surface density, u(x, y, t) is the two-dimensional velocity field,
Ω = Ω ez is the angular velocity of the frame of reference, and Φ = −ΩSx2 is the effective
potential, where S is the rate of orbital shear. The gravitational potential of the disc,
Φd(x, y, z, t), satisfies

∇2Φd = 4πGΣ δ(z) ,

and Φd,m(x, y, t) = Φd(x, y, 0, t) is its value in the midplane. The isothermal sound speed
cs is a constant.

(i) Formulate the linearized equations for infinitesimal disturbances from a basic state
in which Σ is a constant and u = −Sx ey.

(ii) Show that solutions exist in which the velocity perturbation v has the form of a
shearing wave,

v(x, y, t) = Re {ṽ(t) exp[ik(t) · x]} ,

and similarly for the other perturbations, provided that

dk

dt
= Sky ex .

Show that the shearing-wave amplitudes evolve according to the ordinary differential
equations

dΣ̃′

dt
+Σ(ikxṽx + iky ṽy) = 0 ,

dṽx
dt

− 2Ωṽy = −ikx

(

c2s −
2πGΣ

k

)

Σ̃′

Σ
,

dṽy
dt

+ (2Ω − S)ṽx = −iky

(

c2s −
2πGΣ

k

)

Σ̃′

Σ
,

where k = (k2x + k2y)
1/2, and kx depends on t as given above.

(iii) Show that the quantity

q̃′ =
ikxṽy − iky ṽx

Σ
−

(2Ω− S)Σ̃′

Σ2

is independent of time, and describe briefly the physical interpretation of this
quantity.
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(iv) For perturbations such that ky = 0, show that

(

d2

dt2
+ c2sk

2
x − 2πGΣ|kx|+ κ2

)

Σ̃′ = −2ΩΣ2q̃′ ,

where κ2 = 2Ω(2Ω − S). Assuming that κ2 > 0, describe how the behaviour of the
solutions depends on the value of the Toomre parameter

Q =
csκ

πGΣ
.
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