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1

Let P be an Nth order polynomial in λ = (λ1, . . . , λn). What does it mean to say
that P (D) is elliptic? Show that if P (D) is elliptic then there exists a C > 0 such that
|P (λ)| > C〈λ〉N for |λ| sufficiently large.

Define the Sobolev space Hs(Rn) and the local Sobolev space Hs
loc(X), where

X ⊂ Rn is open. Prove that if u ∈ D′(Rn) and u has compact support then u ∈ Ht(Rn)
for some t ∈ R.

Suppose P (D) is elliptic. If u ∈ D′(X) and P (D)u ∈ Hs
loc(X), prove that

u ∈ Hs+N
loc (X).

Now let Q be an Nth order polynomial in λ = (λ1, . . . , λn). Suppose that there
exist constants C, δ > 0 such that |∂αQ(λ)| 6 C|λ|−δ|α||Q(λ)| for all multi-indices α and
for |λ| sufficiently large. Explain how you would adjust your proof in the previous part to
show that

Q(D)u ∈ Hs
loc(X) ⇒ u ∈ Hs+δN

loc (X).

[You may use elementary facts about Sobolev spaces provided they are clearly stated.]

2

Let X ⊂ Rn be open. Define the class of symbols Sym(X,Rk;N). What properties
must a function Φ : X ×Rk → R satisfy for it to be a phase function?

If a ∈ Sym(X,Rk;N) and Φ is a phase function, define what is meant by the
oscillatory integral

IΦ(a) =

∫

eiΦ(x,θ)a(x, θ) dθ.

You may assume that IΦ(a) ∈ D′(X). Define the singular support of a distribution in
D′(X). Show that

sing supp IΦ(a) ⊂
{

x : ∇θΦ(x, θ) = 0 for some θ ∈ Rk ∩ supp a(x, ·)
}

.

Consider the initial value problem

1

c2
∂2E

∂t2
−∆xE = 0 (x, t) ∈ Rn+1

E = 0,
∂E

∂t
= δ0(x) when t = 0.

Show that the solution can be written as the sum of an ordinary function and two
oscillatory integrals with symbols in Sym(Rn+1,Rn;−1). Show that sing suppE is
contained in the light cone {(x, t) : |x| = c|t|}.

Part III, Paper 68



3

3

Define the space of Schwartz functions S(Rn) and the space of tempered distribu-
tions S ′(Rn). Show that the Fourier transform

F : ϕ 7→ ϕ̂(λ) =

∫

e−iλ·xϕ(x) dx

defines a continuous isomorphism on S(Rn). Define the Fourier transform on S ′(Rn) and
show that this defines a continuous isomorphism on S ′(Rn).

Let G be a real, symmetric, positive definite 3× 3 matrix with entries gij . Consider
the quadratic form g : R3 → R defined by

g(x) =

3
∑

i,j=1

gijxixj .

Show that the linear form

ϕ 7→ 〈(1/g), ϕ〉 =
∫

ϕ(x)

g(x)
dx, ∀ϕ ∈ S(R3)

defines a tempered distribution and compute its Fourier transform (1/g)̂ (λ). Briefly
explain how you would extend this result to quadratic forms associated with matrices
whose real part is G. Hence show that

[

1

x21 + x22 + 2x23 + 2ix1x2

]

(̂λ) =

√
2π2

√

λ2
1 + λ2

2 + λ2
3 − 2iλ1λ2

,

where the square-root is defined to have positive real part.

[You may use the fact that
∫∞
0 x−1e−ax sinxdx = arctan(1/a) for a > 0. Elementary

results from linear algebra may be used without proof.]
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