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1

State the definition of smooth manifold.

Give an example (with justifications!) of a connected, second countable, para-
compact, Hausdorff topological space X that does not admit the structure of a smooth
manifold.

Given two smooth manifolds M and N , show that their topological product M×N
admits a natural smooth manifold structure.

Let M be a manifold and x ∈ M. State the definition of tangent space TxM at
x, and show that TxM is a vector space of dimension the dimension of M. Show that a
smooth map f : M → N of manifolds gives rise to a map (f∗)x : TxM → Tf(x)N known
as the push forward (or differential map).

With the notation of above, suppose now in addition that M is connected and
(f∗)x = 0 for all x. Show that f is a constant map.

2

State the definition of Riemannian metric. Show that a Riemannian metric on a
smooth manifold M defines a bundle isomorphism between the tangent and cotangent
bundles.

Show that given any Riemannian manifold (M, g), a point p ∈ M, and a non-empty
open neighbourhood U with p ∈ U , then there exists a second Riemannian metric g̃ on M
such that g̃ = g in M\ U and such that (M, g̃) is locally isometric to Euclidean space in
some neighbourhood of p.

State what it means for a Riemannian manifold to be geodesically complete.

Let M be a manifold such that M \X is diffeomorphic to R
n \ B where B is the

closed ball of radius 1, for some compact subset X ⊂ M. Let g be a Riemannian metric
on M, such that with respect to the local co-ordinates xi induced on M \ X from the
standard coordinates of Rn \B, gij = eij outside some sufficiently large closed ball, where
eij = 1 if i = j and 0 otherwise. Show that (M, g) is geodesically complete.

Now let M be a smooth manifold, and g and g̃ be two metrics on M such that
g̃(v, v) > g(v, v) for all vectors v ∈ TM. Show that if g is geodesically complete, so is g̃.
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Let (M, g) be a Riemannian manifold. Show that there exists a unique connection
∇ in TM (the so-called Levi-Civita connection) such that

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ)

∇XY −∇YX = [X,Y ].

Give an expression for ∇ in local coordinates in terms of g.

Let M be connected and g, g̃ denote two Riemannian metrics on M such that

∇ = ∇̃

as maps:
TM× Γ(TM) → Γ(TM),

where ∇, ∇̃ denote the Levi-Civita connection of g, g̃ respectively. Suppose, moreover,
that g|x = g̃|x at some x ∈ M. Show that g = g̃.

What if one drops the assumption g|x = g̃|x?

4

Let (M, g) be a Riemannian manifold. Define the Riemann curvature tensor and
show that it indeed defines a tensor.

Define sectional and Ricci curvature.

Compute the Riemann curvature tensor of the standard unit n-sphere S
n with its

induced metric from Euclidean R
n+1. Show that this metric on S

n is Einstein, i.e.

Ric = Λg

for some constant Λ which you should compute.

5

State and prove the Bonnet–Myers theorem concerning complete Riemannian
manifolds with Ricci curvature bounded below.

Show by explicit example that the assumption of geodesic completeness is necessary.
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