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Given a codimension one closed complex submanifold V of a complex manifold

M , describe the corresponding holomorphic line bundle [V ], and justify the fact that

it is well-defined up to isomorphism, i.e. independent of any choices you may have

made. [Throughout this question, the standard bijection between (isomorphism classes

of) holomorphic line bundles on M and invertible OM -modules may be assumed without

proof.]

Define the canonical line bundle KM on a complex manifold M ; when M = Pn(C),

find an expression for KM in terms of the hyperplane bundle [H].

Let φ : X → Y be a holomorphic map of complex manifolds and π : L → Y

be a holomorphic line bundle on Y . For U ⊂ X open, we define F(U) to be the set of

holomorphic maps θ : U → L such that π◦θ = φ|U ; show that this determines an invertible

OX -module F . We denote the corresponding holomorphic line bundle on X by φ∗L.

Suppose x1, . . . , xn denote the standard coordinates on Cn, and consider the

projective space Pn−1(C), with homogeneous coordinates Y1, . . . , Yn. Let X ⊂ Cn ×
Pn−1(C) be the subset defined by the equations xiYj = xjYi for all 1 6 i, j 6 n. Show

that X is a complex manifold. If π1 denotes the projection map of X to Cn, show that

π−1
1 (0) is a submanifold E of X biholomorphic to Pn−1(C), and that the restriction of π1

to X \E is a biholomorphism to Cn \ {0}. Prove that KX
∼= [E]⊗(n−1).

For any complex manifold M of dimension n and point P ∈ M , sketch briefly

how, using the above construction, you would construct a complex manifold M̃ and a

holomorphic map φ : M̃ → M , with E := φ−1(P ) a submanifold biholomorphic to

Pn−1(C) and φ : M̃ \ φ−1(P ) → M \ {P} a biholomorphic map (you need not show

that your construction is independent of the choices that you may have made). Prove that

KM̃
∼= φ∗KM ⊗ [E]⊗(n−1).
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Define what is meant by a connection D on a complex vector bundle E over a

smooth manifold M , and show that connections on E always exist. What is the curvature

ΘD associated to the connection? State and prove Cartan’s equation for the corresponding

curvature matrix Θ (with respect to a given local frame for E). Explain how one obtains

a globally defined closed 2-form Tr ΘD from the curvature.

If E has rank r and D is a connection on E, show that there is a naturally defined

associated connection D(r) on
∧r E, whose curvature 2-form is just Tr ΘD. Justify briefly

(omitting details) why the De Rham cohomology class determined by Tr ΘD is independent

of the connection.

Suppose now that M is a complex manifold and that E is a holomorphic vector

bundle over M , equipped with a hermitian metric. If h = (hij) is the hermitian matrix

defined by hij := (ei, ej) for some local holomorphic frame e1, . . . , er for E, we define a

matrix of 2-forms locally by

(∂̄∂h).h−1 + (∂h).h−1 ∧ (∂̄h).h−1,

where dot here denotes matrix multiplication and wedge denotes the product of matrices

of 1-forms. Show that the trace of the above matrix is an exact local 2-form independent

of the choice of holomorphic frame, and hence defines a global closed 2-form α. Why is

the De Rham cohomology class of α independent of the choice of metric? Justify your

answer.

3

Explain what is meant by a Hodge metric on a compact complex manifold. Show

that a complex torus admits a Hodge metric if and only if it admits an invariant one —

here, you should explain what is meant by the word invariant in this context.

Given a lattice Λ in Cn and a choice of basis λ1, . . . , λ2n for Λ, we can take the

standard basis e1, . . . , en for Cn and define the period matrix Ω = (ωαi) to be the n× 2n

matrix such that λi =
∑n

α=1 ωαi eα. Prove that the complex torus M = Cn/Λ admits a

Hodge metric if and only if there exists an integral skew-symmetric matrix Q satisfying

ΩQ−1Ωt = 0 and −iΩQ−1Ω
t
is a positive-definite (hermitian) matrix.

Suppose now Λ ⊂ C2 is a lattice with period matrix Ω = (I2, iA), where I2 denotes

the 2× 2 identity matrix and A =

(

1 −
√
2√

2 1

)

. Prove that M = C2/Λ does not admit

any Hodge metric.
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For M a complex manifold of dimension n equipped with a hermitian metric, let ω
denote the associated (1, 1)-form. Give the defining property of the Hodge ∗-operator

∗ : ap,q
M → a

n−p,n−q
M .

For ψ ∈ ap,q
M (U), state a formula for ∗ ∗ ψ. Let L : ap,q

M → a
p+1,q+1
M denote the operator

given by L(η) = ω ∧ η; define the formal adjoint Λ = L∗ : ap,q
M → a

p−1,q−1
M . When M

is compact, show that L and Λ are adjoint operators when acting on global forms (with
induced inner-product).

Assuming the result that the commutator [L,Λ] acts via multiplication by k−n on
a

k
M , prove by induction that for r > 1, [Lr,Λ] = {r(k−n)+ r(r−1)}Lr−1 as operators on

a
k
M . Deduce by induction on r + k that if r, k are non-negative integers with r + k 6 n,

then Lr : ak
M → a

k+2r
M is an injective morphism of sheaves. [Hint: Prove the result first

for k = 0, 1. For k > 1, under an appropriate inductive hypothesis show that, for any

ψ ∈ ak
m(U) with Lrψ = 0, we can write ψ = Lα for some α ∈ ak−2

m (U) with Lr+1α = 0.]

In the case when M is a Kähler manifold, state the Hodge identities for [Λ, ∂̄]
and [Λ, ∂]; deduce corresponding identities for [L, ∂̄∗] and [L, ∂∗]. Deduce also identities
between the various Laplacians ∆d, ∆∂ and ∆∂̄ on M . In this case, show that the
Laplacians commute with L.

For M is a compact Kähler manifold, explain briefly why the Hodge decomposition
theorem for global forms implies that the Dolbeault cohomology group Hp,q

∂̄
(M) is

isomorphic to the space Hp,q(M) of harmonic (p, q)-forms. If hp,q denotes the complex
dimension of Hp,q

∂̄
(M), prove that hp,q = hq,p and hp,q = hn−p,n−q. Deduce that Ln−(p+q)

induces an isomorphism between Dolbeault cohomology groupsHp,q

∂̄
(M) → Hn−q,n−p

∂̄
(M).
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