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1

Let K be a compact H-hull and let H = H \K. Let S ⊂ δH, where δH stands for
the intrinsic boundary Ĥ \H. Let z = x+ iy and let B be a complex Brownian motion.

(i) Let z ∈ H, and assume that B0 = z. Let T (H) = inf{t > 0 : Bt /∈ H}. Show
that as t ↑ T (H), Bt converges in Ĥ to a point B̂T (H) of δH, almost surely. Show that for
all Borel sets S ⊂ δH,

lim
y→∞,x/y→0

πyPz(B̂T (H) ∈ S) = Leb (gK(S)),

where gK is the mapping-out function of K. You may use without proof the following
formula for the harmonic measure in H:

hH(u+ iv; t) =
v

π((t− u)2 + v2)
; t ∈ R.

(ii) Let H0 = {x ∈ R : H is a neighbourhood of x in H}. By considering S =
δH \H0 or otherwise, deduce briefly that

cap(K) := lim
y→∞

πyPiy(BT (H) ∈ K)

is well-defined. You may assume the fact that gK extends to a homeomorphism on H∪H0.
Show that if K ′ is another compact H-hull such that K ⊂ K ′ then cap(K) 6 cap(K ′).
Deduce that cap(K) 6 4 rad(K). [Hint: If K ′ = D̄ ∩H then gK ′(z) = z + z−1. ]

(iii) Now assume that rad(K) = 1, that 0 ∈ K̄ and also that x + iy ∈ K̄ with
x2 + y2 = 1. By considering a reflection about the segment I = [x, x + iy] show that
cap(K) > 1/2. [Hint: If K = [0, i] then gK(z) =

√
z2 + 1. Consider the image of a

segment (0, a] under gK .]

2

Let (γt, t > 0) be an SLE(κ) curve, with driving function (ξt, t > 0). Let
(gt(z), t < ζ(z), z ∈ H) denote the associated Loewner flow.

(i) For z ∈ H, and t < ζ(z) let ht(z) = arg(gt(z) − ξt). Show that (ht(z), t < ζ(z))
is a martingale if and only if κ = 4.

(ii) Let t > 0 and let Ht = H \ γ[0, t]. Show that ht(z) solves a Dirichlet problem in
Ht and identify the boundary conditions.

(iii) Assume κ = 4. Let z ∈ H \ γ[0,∞). Show that F (z) = limt→∞ ht(z) exists
almost surely and compute F (z).
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(i) Write down Loewner’s equation in the complex plane C for a driving function
(ξt, t > 0).

(ii) Let ξt = −√
κWt, whereWt is a one-dimensional standard Brownian motion, and

let gt denote the associated Loewner flow. Let x ∈ R and let Xt(x) = (gt(x
√
κ)− ξt)/

√
κ.

Write down the stochastic differential equation for Xt(x) (let a = 2/κ). Show that Xt(x)
hits zero a.s. if a < 1/2 and doesn’t hit zero a.s. if a > 1/2.

(iii) For what range of values of the SLE(κ) curve simple? Justify your answer.

4

(i) Define the notion of compact H-hull. Let K be a compact H-hull. Define the
mapping-out function gK and the half-plane capacity hcap(K). State (without proof) the
continuity estimate and the differentiability estimate for gK .

(ii) Let (Kt)t>0 be an increasing family of compact H-hulls. Explain what it means
to say that (Kt)t>0 satisfies the local growth property. Assuming the local growth property,
define the associated Loewner transform (ξt, t > 0), and show that (ξt, t > 0) is continuous.

Assume that hcap(Kt) = 2t. Find a differential equation satisfied by gt(z) = gKt
(z),

justifying your answer.
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