
MATHEMATICAL TRIPOS Part III

Wednesday, 5 June, 2013 9:00 am to 12:00 pm

PAPER 30

APPLIED STATISTICS

Attempt no more than FOUR questions, with at most THREE from Section A.

There are SIX questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Cover sheet None

Treasury Tag

Script paper

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

SECTION A

1

(a) Write down the general form of an ordinary linear model on n observations Y with
an n × p covariate matrix X. Make sure you define all the parameters you mention,
and state any conditions on X.

(b) Show that P = X(XTX)−1XT is a symmetric projection matrix; that is, show that
P T = P and P 2 = P .

(c) Define the fitted values and the residuals in terms of P and Y . Derive their distri-
butions. [Hint: For random vectors Y , Z and matrices of appropriate dimensions A,

B, we have Cov(AY , BZ) = ACov(Y ,Z)BT . You may assume any other standard

results about multivariate normal distributions, but these must be stated clearly.]

(d) Show that the fitted values and residuals are independent.

A statistician is considering the relationship between two variables x and y. She
fits a linear model using the R command lm1 = lm(y ~ x). Figure 1 shows the residuals
from the model lm1 plotted against the fitted values.

(e) The plot suggests a violation of the modelling assumptions made by the linear model.
Explain what the assumption is, and how the plot diagnoses the violation.

(f) Can you suggest another model that the statistician might try? Write down the
algebraic form of this model in full.
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Figure 1: Scatter plot of residuals against fitted values for the model lm1.
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2

Let Yij = µ+αi+εij for each i = 1, . . . , I and j = 1, . . . , J , where the εij ’s are independent
normal random variables with mean 0 and variance σ2, and subject to the restriction that
α1 = 0.

(a) Derive the maximum likelihood estimates of µ and α2, . . . , αI . Call them µ̂ and
α̂2, . . . , α̂I respectively.

(b) Find the univariate distributions of µ̂ and α̂2, and hence show that

se(α̂i)

se(µ̂)
=

√
2

for each i = 2, . . . , I, where se(β̂) is the standard error of β̂.

Professor Eccentric wishes to test the effect of various types of chocolate bar upon his
lecturing speed. Over a 24 lecture course he records:

day the day of the week on which the lecture was given (Tuesday, Thursday or Saturday);
choc the type of chocolate bar he ate (A, B, C or D);
boards the number of chalkboards he gets through during the lecture.

Each combination of choc and day is observed exactly twice. Professor Eccentric fits two
models using R, lm.cd and lm.c; an edited version of his output appears below. The
professor uses R’s default corner-point constraints.

(c) Write down algebraic form of the model being fitted as lm.cd, defining all symbols
and making clear any distributional assumptions or identifiability constraints.

(d) Carry out the hypothesis test being performed on the line of output marked with
(++) (some of the values have been deleted and replaced with x’s). You should be
sure to state the null hypothesis, test statistic, null distribution of the test statistic,
your conclusion, and what it tells Professor Eccentric about his model.

[Hint: The 0.95-quantile of an Fa,b-distribution for various a, b are given in the table

below to assist you.]

a \b 17 18 19 20

1 4.451 4.414 4.381 4.351
2 3.592 3.555 3.522 3.493
3 3.197 3.160 3.127 3.098

(e) Look at all the R output. What would you report to Professor Eccentric about the
effect of his choice of chocolate bar and the day of the week on his lecturing?

> profecc

day choc boards

1 Thur A 11

2 Sat B 17
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3 Tues C 10

4 Thur D 9

...

24 Tues D 13

> lm.cd = lm(boards ~ choc + day, data=profecc)

> anova(lm.cd)

Analysis of Variance Table

Response: boards

Df Sum Sq Mean Sq F value Pr(>F)

choc 3 70.792 23.5972 3.9665 0.02473

day xx 9.750 xxxx xxxx xxxx (++)

Residuals 18 107.083 5.9491

---

>

> lm.c = lm(boards ~ choc, data=profecc)

> summary(lm.c)

Call:

lm(formula = boards ~ choc, data = profecc)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.1667 0.9867 14.357 5.38e-12

chocB -2.5000 1.3954 -1.792 0.08835

chocC -4.8333 1.3954 -3.464 0.00245

chocD -2.8333 1.3954 -2.030 0.05582

---

Residual standard error: 2.417 on 20 degrees of freedom

Multiple R-squared: 0.3773,Adjusted R-squared: 0.2839

F-statistic: 4.039 on 3 and 20 DF, p-value: 0.02133
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3

(a) Define an exponential dispersion family with natural parameter θ. Define the mean
parameter µ and variance function V .

(b) Let Y be a Poisson random variable with mean λ. Show that the collection of
distributions of Poisson random variables for varying λ is an exponential dispersion
family with dispersion parameter 1, and find the natural parameter, canonical link
function, and variance function.

A council officer measures the number of car crashes reported to the police (nacc) in
Cambridgeshire each day for two years. In the second year, the police begin a road safety
campaign to reduce accidents. The council officer wishes to determine whether or not the
campaign has been effective in reducing accidents. Study the edited R output below.

(c) Carefully write down the model being fitted as glm1. Give estimates and approximate
95% confidence intervals each of the parameters, and interpretations of them with
regard to the original problem.

(d) Describe the model being fitted as glm2; explain why this model may be more
appropriate than glm1, in the context of the council officer’s data.

(e) What conclusion should the council officer draw about the road safety campaign’s
effect on accident rates?

> dat

nacc yr

1 5 1

2 8 1

3 3 1

4 4 1

5 7 1

...

726 5 2

727 1 2

728 3 2

729 5 2

730 2 2

>

> glm1 = glm(nacc ~ yr, family=poisson, data=dat)

> summary(glm1)

Call:

glm(formula = nacc ~ yr, family = poisson, data = dat)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.78810 0.02141 83.526 < 2e-16
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yr2 -0.09816 0.03105 -3.162 0.00157

---

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2587.8 on 729 degrees of freedom

Residual deviance: 2577.8 on 728 degrees of freedom

>

> glm2 = glm(nacc ~ yr, family=quasipoisson, data=dat)

> summary(glm2)

Call:

glm(formula = nacc ~ yr, family = quasipoisson, data = dat)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.78810 0.04014 44.549 <2e-16

yr2 -0.09816 0.05821 -1.686 0.0922

---

(Dispersion parameter for quasipoisson family taken to be 3.515351)

Null deviance: 2587.8 on 729 degrees of freedom

Residual deviance: 2577.8 on 728 degrees of freedom
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4

There are 100 people taking part in Mr Mussel’s 10 week weight training programme;
they each measure the amount of weight in kilograms that they can lift in weeks 0, 2, 4,
6, 8 and 10. The data look like this:

Subject
Week

0 2 4 6 8 10

1 66 84 87 120 121 128
2 48 63 59 73 76 88
3 42 42 54 56 55 38
...

...
...

100 56 79 87 84 117 107

Mr Mussel wants to know how much extra weight his trainees can expect to be able
to lift after completing his programme. He stores the data in an R data frame called dat.

> dat

subject wks weight

1 0 66

1 2 84

1 4 87

1 6 120

1 8 121

1 10 128

2 0 48

2 2 63

2 4 59

......

100 6 84

100 8 117

100 10 107

(a) Explain why an ordinary linear model with outcome weight and covariate wks might
not be appropriate for these data.

(b) Consider the R output below. Write down, in algebraic form, the model fitted as lmem1
and explain how it overcomes the difficulty mentioned in part (a).

(c) Write a short report to answer Mr Mussel’s question, using the analyses in the R

output. Your answer should include:

• a full algebraic description of the model lmem2;

• which of lmem1 and lmem2 you prefer and why;

• interpretations of all parameters in your preferred model;

• how you estimate an average person might expect to perform over the 10 week
programme;
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• an estimate of how the most successful individuals perform during the pro-
gramme.

> lmem1 = lme(weight ~ wks, data=dat, random = ~ 1 | subject)

> summary(lmem1)

Linear mixed-effects model fit by REML

Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 21.67593 14.23496

Fixed effects: weight ~ wks

Value Std.Error DF t-value p-value

(Intercept) 61.09286 2.3999739 499 25.45563 0

wks 2.83143 0.1701403 499 16.64173 0

Correlation:

(Intr)

wks -0.354

Number of Observations: 600

Number of Groups: 100

> lmem2 = lme(weight ~ wks, data=dat, random = ~ wks | subject)

> summary(lmem2)

Linear mixed-effects model fit by REML

Random effects:

Formula: ~wks | subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 15.785582 (Intr)

wks 2.738666 0.117

Residual 9.923280

Fixed effects: weight ~ wks

Value Std.Error DF t-value p-value

(Intercept) 61.09286 1.7342575 499 35.22710 0

wks 2.83143 0.2984464 499 9.48723 0

Correlation:

(Intr)

wks -0.038

Number of Observations: 600

Number of Groups: 100

> lmem1a = lme(weight ~ wks, data=dat, random = ~ 1 | subject, method="ML")

> lmem2a = lme(weight ~ wks, data=dat, random = ~ wks | subject, method="ML")
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> anova(lmem1a, lmem2a)

Model df AIC BIC logLik Test

lmem1a 1 4 5165.779 5183.367 -2578.890

lmem2a 2 6 4941.819 4968.200 -2464.909 1 vs 2

L.Ratio p-value

lmem1a

lmem2a 227.9604 <.0001
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SECTION B
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5

(a) Briefly describe what is meant by

(i) observed heterogeneity

(ii) unobserved heterogeneity

(iii) (true) contagion

(b) A recent randomised controlled smoking cessation trial compared the effectiveness of a
combined intervention of cognitive behavioural therapy and nicotine replacement therapy
(CBT & NRT) with monotherapy of nicotine replacement (NRT only) in improving the
likelihood for smokers to quit smoking. The trial recruited 100 smokers who, after being
advised by their General Practitioners (GPs) to give up smoking four weeks prior to
randomisation, failed to spend at least one full week without smoking over that one month
period immediately before the start of the study.

The study was conducted over a ten-week period where at the end of each week the
smokers were asked to record in their diary whether or not they had a smoking-free week
(coded 1 for a smoking-free week; 0 for a smoking week). Participants were randomised
with probability of a half to either receipt of CBT & NRT or NRT only (coded 1 for CBT &
NRT; 0 for NRT only) and, at the start of the study, explanatory variable information on
gender of participant (1 for male; 0 for female) and age was recorded. The data collected
are stored in the R data-frame, quitsmoke.dat, and the first few lines of the data-set are
presented below using the R command:

> head(quitsmoke.dat)

id sex age trt y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

1 1 0 38 0 0 0 0 0 1 0 0 0 0 0

2 2 1 28 0 0 0 0 1 0 0 0 0 1 0

3 3 0 35 1 0 1 1 0 1 0 0 1 1 0

4 4 0 23 1 0 0 1 0 0 1 0 1 1 1

5 5 1 25 1 1 0 0 0 0 0 0 0 0 0

6 6 1 30 1 0 0 0 0 1 0 0 0 1 0

The reported variables are

id = unique smoker identification number,
sex = gender of smoker,
age = smoker’s age at start (in years),
trt = intervention type, and
y1,. . ., y10 = binary week 1 to week 10 smoking cessation outcome variables.

Examine carefully the following edited R code and output.

> n <- 100

> id <- rep(quitsmoke.dat$id, rep(10,n))

> sex <- rep(quitsmoke.dat$sex, rep(10,n))

> age <- rep(quitsmoke.dat$age, rep(10,n))
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> trt <- rep(quitsmoke.dat$trt, rep(10,n))

> y <- as.vector(t(quitsmoke.dat[,5:14]))

> ylag.one <- as.vector(t(cbind(0,quitsmoke.dat[,5:13])))

> ylag.two <- as.vector(t(cbind(0,0,quitsmoke.dat[,5:12])))

> ycumprev <- as.vector(apply(cbind(0,quitsmoke.dat[,5:13]),MARGIN=1,FUN=cumsum))

> id[1:20]

[1] 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

> y[1:20]

[1] 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0

> ylag.one[1:20]

[1] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1

> ylag.two[1:20]

[1] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

> ycumprev[1:20]

[1] 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 2

> # First Model

> model1.glm <- glm(y~sex+age+trt+ylag.one, family=binomial)

> summary(model1.glm)

Call:

glm(formula = y ~ sex + age + trt + ylag.one, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.1074 -0.7798 -0.7551 1.2683 1.8568

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.121966 0.413227 -2.715 0.00662

sex -0.458154 0.146050 -3.137 0.00171

age 0.002295 0.011661 0.197 0.84399

trt 0.397702 0.145662 2.730 0.00633

ylag.one 0.449495 0.160742 2.796 0.00517

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1189.7 on 999 degrees of freedom

Residual deviance: 1164.4 on 995 degrees of freedom

Number of Fisher Scoring iterations: 4
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> # Second Model

> model2.glm <- glm(y~sex+age+trt+ylag.one+ylag.two, family=binomial)

> summary(model2.glm)

Call:

glm(formula = y ~ sex + age + trt + ylag.one + ylag.two, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.2621 -0.8648 -0.7278 1.2761 1.8872

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.227399 0.417261 -2.942 0.00327

sex -0.426611 0.147121 -2.900 0.00373

age 0.002509 0.011718 0.214 0.83042

trt 0.370279 0.146682 2.524 0.01159

ylag.one 0.399898 0.162741 2.457 0.01400

ylag.two 0.538786 0.173447 3.106 0.00189

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1189.7 on 999 degrees of freedom

Residual deviance: 1155.0 on 994 degrees of freedom

Number of Fisher Scoring iterations: 4

> # Third Model

> model3.glm <- glm(y~sex+age+trt+ycumprev, family=binomial)

> summary(model3.glm)

Call:

glm(formula = y ~ sex + age + trt + ycumprev, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7749 -0.7961 -0.6689 1.1100 1.9562

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.417630 0.423986 -3.344 0.000827

sex -0.364092 0.149944 -2.428 0.015175

age 0.001224 0.011880 0.103 0.917950

trt 0.327118 0.149391 2.190 0.028548

ycumprev 0.399296 0.058739 6.798 1.06e-11

---
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1189.7 on 999 degrees of freedom

Residual deviance: 1122.0 on 995 degrees of freedom

Number of Fisher Scoring iterations: 4

(i) Write out mathematically the model being fitted in model1.glm, remembering to
define all notation used and stating any assumptions. Additionally, write out the
likelihood contribution for the ith individual in the study.

(ii) Carry out a likelihood ratio test to determine whether model2.glm is an improve-
ment over model1.glm.

(iii) Determine whether model3.glm would be preferred over the better fitting model in
b(ii).

(iv) Interpret the output from the best of the three models presented. This should be
done in the context of the study.

(v) Based on the estimates from the best model, give an expression for the probability
that a 20-year old female smoker (who satisfies the conditions for entering the study)
would abstain from smoking (i.e. stop smoking) during her first three weeks on NRT.
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6

Parkinson’s disease is a degenerative disorder of the central nervous system that
is more common in the elderly with mean age of onset around 60 years. Mild cognitive
impairment may be a troublesome symptom of the disease and can progress onto dementia,
a more severe loss of intellectual abilities that interferes with activities of daily living so
profoundly that it may not be possible for a person to live independently.

Researchers into ageing and neurological diseases have decided to investigate the
progression of cognitive functioning over time (from diagnosis) in an observational cohort
of Parkinson’s patients who were diagnosed in the last ten years and referred to a specialist
neurological clinic. In particular, they are interested in modelling the transitions between
three states – mild cognitive impairment (state 1), dementia (state 2) and death (state 3),
and investigating the impact of time-independent explanatory variables, age at diagnosis
of Parkinson’s (in years), educational attainment (coded 0 for 612 years of full time
education; and 1 for >12 years of full time education), and gender (coded 0 for female;
and 1 for male), on the rates of transition between the various states. Patients in this clinic
are followed up intermittently, but if they had died the exact death time was recorded.

The data were read into R and named parkinson.dat. The data for patients 7, 8
and 9 are shown below.

> parkinson.dat[(parkinson.dat$subject >=7) & (parkinson.dat$subject <=9),]

subject time state sex edu diagage

35 7 0.000000 1 0 1 69

36 7 2.473380 2 0 1 69

37 7 6.181523 2 0 1 69

38 7 6.295681 2 0 1 69

39 7 7.107472 2 0 1 69

40 7 7.466763 2 0 1 69

41 7 7.924641 2 0 1 69

42 7 7.990554 3 0 1 69

43 8 0.000000 1 0 0 64

44 8 3.261286 1 0 0 64

45 8 4.492359 1 0 0 64

46 9 0.000000 1 0 1 51

47 9 1.289561 1 0 1 51

48 9 3.984003 1 0 1 51

49 9 4.434085 1 0 1 51

50 9 8.772825 2 0 1 51

51 9 9.046087 2 0 1 51

The variables are
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subject = unique patient number,
time = time (in years) from diagnosis of Parkinson’s,
state = cognition or death states,
sex = gender of patient,
edu = educational attainment,
diagage = age (in years) at diagnosis of Parkinson’s.

(a) Construct the likelihood contributions of these three patients (7, 8 and 9) for time-
homogeneous Markov multi-state processes given by the state and time variables in
parkinson.dat. You need to define any terms used. (Approximation of the time variable
to two decimal places is permitted.)

(b) The following is the edited R output from a multi-state modelling analysis using the
msm package in R.

> parkinson.msm0

Call:

msm(formula = state ~ time, subject = subject, data = parkinson.dat, qmatrix = Qmat,

death = TRUE, method = "Nelder-Mead")

Maximum likelihood estimates:

Transition intensity matrix

State 1 State 2 State 3

State 1 -0.2043 (-0.2557,-0.1632) 0.1849 (0.1435,0.2383) 0.01935 (0.006759,0.05541)

State 2 0 -0.06143 (-0.1063,-0.03552) 0.06143 (0.03552,0.1063)

State 3 0 0 0

-2 * log-likelihood: 462.7531

> pmatrix.msm(parkinson.msm0,t=1)

State 1 State 2 State 3

State 1 0.8152585 0.1620358 0.02270565

State 2 0.0000000 0.9404163 0.05958370

State 3 0.0000000 0.0000000 1.00000000

> parkinson.msm1

Call:

msm(formula = state ~ time, subject = subject, data = parkinson.dat, qmatrix = Qmat,

covariates = ~sex + edu + diagage, death = TRUE, fixedpars = c(5, 6),

method = "Nelder-Mead")

Maximum likelihood estimates:

Transition intensity matrix with covariates set to their means
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State 1 State 2 State 3

State 1 -0.1947 (-0.2478,-0.1529) 0.1821 (0.1418,0.2338) 0.0126 (0.001996,0.07954)

State 2 0 -0.045 (-0.0918,-0.02206) 0.045 (0.02206,0.0918)

State 3 0 0 0

Log-linear effects of sex

State 1 State 2 State 3

State 1 0 0.09534 (-0.3968,0.5875) 0

State 2 0 0 0

State 3 0 0 0

Log-linear effects of edu

State 1 State 2 State 3

State 1 0 -0.4306 (-0.9363,0.07503) 1.223 (-2.507,4.953)

State 2 0 0 -1.49 (-2.547,-0.4327)

State 3 0 0 0

Log-linear effects of diagage

State 1 State 2 State 3

State 1 0 0.007627 (-0.03452,0.04978) 0.1262 (-0.06247,0.3148)

State 2 0 0 0.07984 (-0.007765,0.1674)

State 3 0 0 0

-2 * log-likelihood: 442.0713

> qchisq(0.95,1:12)

[1] 3.841459 5.991465 7.814728 9.487729 11.070498 12.591587 14.067140

[8] 15.507313 16.918978 18.307038 19.675138 21.026070

(i) This part of the question applies to the model as specified in fitting parkinson.msm0.
Draw the transition diagram, including on it the estimated transition intensities
corresponding to each type of transition. What is the estimated mean time spent
(with 95% confidence interval) in the dementia state before dying? Given that a
Parkinson’s disease patient currently has dementia, what is this patient’s estimated
probability of being dead 2 years later based on this model?

(ii) Write out mathematically the multi-state model corresponding to parkinson.msm1,
making sure to define all notation used and stating all assumptions being made.

(iii) Formally compare parkinson.msm1 to parkinson.msm0 to decide if there is an
improvement from fitting this more complicated model. Interpret the effects of all
explanatory variables in parkinson.msm1 on the dementia to death transition.
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END OF PAPER
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